Skip to main content

Phase Field Crack Growth Model with Hydrogen Embrittlement

  • Conference paper
  • First Online:
Book cover Mathematical Analysis of Continuum Mechanics and Industrial Applications

Part of the book series: Mathematics for Industry ((MFI,volume 26))

Abstract

As an application of the phase field model for crack propagation in elastic body, chemical-diffuse crack growth model with the effect of the hydrogen embrittlement is considered. Numerical results show the difference of crack path between data with the effects and data without the effect. Temporal evolution of the normalized difference of phase field depict the time when start the difference of crack path.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 602–620 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Takaishi, T., Kimura, M.: Phase field model for mode III crack growth. Kybernetika 45, 605–614 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Kimura, M., Takaishi, T.: A phase field approach to matehmatical modeling of crack propagation. A mathematical approach to research problems of science and technology mathematics for industry 5, 161–170 (2014)

    Google Scholar 

  4. Francfort, G.A., Marigo, J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–342 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosio, L., Tortorelli, V.M.: On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. 7, 105–123 (1992)

    MathSciNet  MATH  Google Scholar 

  6. Troiano, A.R.: The role of Hydrogen and other interstitials in the mechanical behaviour of metals. Trans. ASM 52, 54–80 (1960)

    Google Scholar 

  7. Beachem, C.D.: A new model for hydrogen-asisted cracking. Metall. Trans. 3, 437–451 (1972)

    Article  Google Scholar 

  8. Griffith, A.A.: The phenomenon of rupture and flow in solids. Philos. Trans. Roy. Soc. Lond. A221, 163–198 (1921)

    Article  Google Scholar 

  9. Bourdin, B.: Numerical implementation of the variational formulation of brittle fracture. Interfaces Free Bound. 9, 411–430 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buliga, M.: Energy minimizing brittle crack propagation. J. Elast. 52, 201–238 (1998/99)

    Google Scholar 

  11. Kobayashi, R.: Modeling and numerical simulations of dendritic crystal growth. Physica D 63, 410–423 (1993)

    Article  MATH  Google Scholar 

  12. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is in collaboration with M.Kimura.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Takaishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Takaishi, T. (2017). Phase Field Crack Growth Model with Hydrogen Embrittlement. In: Itou, H., Kimura, M., Chalupecký, V., Ohtsuka, K., Tagami, D., Takada, A. (eds) Mathematical Analysis of Continuum Mechanics and Industrial Applications. Mathematics for Industry, vol 26. Springer, Singapore. https://doi.org/10.1007/978-981-10-2633-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2633-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2632-4

  • Online ISBN: 978-981-10-2633-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics