Advertisement

Bridging the Scales Between Discrete and Continuum Dislocation Models

  • Patrick van MeursEmail author
Conference paper
Part of the Mathematics for Industry book series (MFI, volume 26)

Abstract

We prove the many-particle limit passage of interacting particle systems described by gradient flows . The limiting equation is a gradient flow which describes the evolution of the particle density. Our proof methods rely on variational techniques such as \(\varGamma \) -convergence of the particle configuration energies and stability of gradient flows. The interacting particle systems under consideration model the motion of dislocations in metals. Since the collective motion of dislocations is the main driving force of plastic deformation of metals, we aim to contribute with our analysis to the current understanding of plasticity.

Keywords

Gradient Flow Interact Particle System Dislocation Wall Discrete Dislocation Finite Borel Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Acharya, A.: New inroads in an old subject: plasticity, from around the atomic to the macroscopic scale. J. Mech. Phys. Solids 58(5), 766–778 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alicandro, R., De Luca, L., Garroni, A., Ponsiglione, M.: Metastability and dynamics of discrete topological singularities in two dimensions: a \(\varGamma \)-convergence approach. Arch. Ration. Mech. Anal. 214(1), 269–330 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alvarez, O., Carlini, E., Hoch, P., Le Bouar, Y., Monneau, R.: Dislocation dynamics described by non-local hamilton-jacobi equations. Mater. Sci. Eng.: A 400, 162–165 (2005)CrossRefGoogle Scholar
  4. 4.
    Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Birkhauser Verlag, New York (2008)Google Scholar
  5. 5.
    Ambrosio, L., Savaré, G., Zambotti, L.: Existence and stability for Fokker-Planck equations with log-concave reference measure. Probab. Theory Relat. Fields 145, 517–564 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Braides, A., Gelli, M.S.: Continuum limits of discrete systems without convexity hypotheses. Math. Mech. Solids 7(1), 41–66 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cai, W., Arsenlis, A., Weinberger, C.R., Bulatov, V.V.: A non-singular continuum theory of dislocations. J. Mech. Phys. Solids 54(3), 561–587 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Canizo, J.A., Carrillo, J.A., Rosado, J.: A well-posedness theory in measures for some kinetic models of collective motion. Math. Models Methods Appl. Sci. 21(03), 515–539 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cermelli, P., Leoni, G.: Renormalized energy and forces on dislocations. SIAM J. Math. Anal. 37(4), 1131–1160 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    De Luca, L., Garroni, A., Ponsiglione, M.: \(\varGamma \)-convergence analysis of systems of edge dislocations: the self energy regime. Arch. Ration. Mech. Anal. 206(3), 885–910 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Focardi, M., Garroni, A.: A 1D macroscopic phase field model for dislocations and a second order \(\varGamma \)-limit. Multiscale Model. Simul. 6(4), 1098–1124 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Forcadel, N., Imbert, C., Monneau, R.: Homogenization of the dislocation dynamics and of some particle systems with two-body interactions. Discrete Continuous Dyn. Syst. A 23(3), 785–826 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Garroni, A., Müller, S.: A variational model for dislocations in the line tension limit. Arch. Rational Mech. Anal. 181(3), 535–578 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Garroni, A., Leoni, G., Ponsiglione, M.: Gradient theory for plasticity via homogenization of discrete dislocations. J. Eur. Math. Soc. 12(5), 1231–1266 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Geers, M.G.D., Peerlings, R.H.J., Peletier, M.A., Scardia, L.: Asymptotic behaviour of a pile-up of infinite walls of edge dislocations. Arch. Rational Mech. Anal. 209, 495–539 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Groma, I., Balogh, P.: Investigation of dislocation pattern formation in a two-dimensional self-consistent field approximation. Acta Mater. 47(13), 3647–3654 (1999)CrossRefGoogle Scholar
  17. 17.
    Groma, I., Csikor, F.F., Zaiser, M.: Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Mater. 51(5), 1271–1281 (2003)CrossRefGoogle Scholar
  18. 18.
    Hudson, T.: Gamma-expansion for a 1D confined Lennard-Jones model with point defect. Netw. Heterogen. Media 8(2), 501–527 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hull, D., Bacon, D.J.: Introduction to Dislocations. Butterworth Heinemann, Oxford (2001)Google Scholar
  20. 20.
    Louat, N.: The distribution of dislocations in stacked linear arrays. Philos. Mag. 8(91), 1219–1224 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Mora, M.G., Peletier, M.A., Scardia, L.: Convergence of interaction-driven evolutions of dislocations with Wasserstein dissipation and slip-plane confinement. arXiv:1409.4236 (2014)
  22. 22.
    Nabarro, F.R.N.: Dislocations in a simple cubic lattice. Proc. Phys. Soc. 59(2), 256 (1947)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Oelschläger, K.: Large systems of interacting particles and the porous medium equation. J. Differ. Equ. 88(2), 294–346 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Peierls, R.: The size of a dislocation. Proc. Phys. Soc. 52(1), 34–37 (1940)CrossRefGoogle Scholar
  25. 25.
    Roy, A., Peerlings, R.H.J., Geers, M.G.D., Kasyanyuk, Y.: Continuum modeling of dislocation interactions: why discreteness matters? Mater. Sci. Eng.: A 486, 653–661 (2008)CrossRefGoogle Scholar
  26. 26.
    Sandier, E., Serfaty, S.: Gamma-convergence of gradient flows with applications to Ginzburg-Landau. Commun. Pure Appl. Math. 57, 1627–1672 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Scardia, L., Schlömerkemper, A., Zanini, C.: Boundary layer energies for nonconvex discrete systems. Math. Models Methods Appl. Sci. 21(4), 777–817 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Serfaty, S.: Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discret. Contin. Dyn. Syst. A 31, 1427–1451 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Smith, E.: The spread of plasticity from stress concentrations. Proc. Roy. Soc. Lond. Ser. A. Math. Phys. Sci. 282(1390), 422–432 (1964)CrossRefzbMATHGoogle Scholar
  30. 30.
    van Meurs, P.: Discrete-to-Continuum Limits of Interacting Dislocations. PhD thesis, Technische Universiteit Eindhoven (2015)Google Scholar
  31. 31.
    van Meurs, P., Muntean, A.: Upscaling of the dynamics of dislocation walls. Adv. Math. Sci. Appl. 24(2), 401–414 (2014)MathSciNetzbMATHGoogle Scholar
  32. 32.
    van Meurs, P., Muntean, A., Peletier, M.A.: Upscaling of dislocation walls in finite domains. Eur. J. Appl. Math. 25(6), 749–781 (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Kanazawa UniversityKanazawaJapan

Personalised recommendations