Advertisement

Mathematical Analysis of Synchronization from the Perspective of Network Science

  • Hirotada HondaEmail author
  • Atusi Tani
Conference paper
Part of the Mathematics for Industry book series (MFI, volume 26)

Abstract

In this chapter, we discuss the mathematical analysis of synchronization with focusing on that of the Kuramoto–Sakaguchi equation. We also introduce related topics from the perspective of network science. The solvability and existence of vanishing diffusion coefficient are investigated.

References

  1. 1.
    Chiba, H.: A proof of the Kuramoto conjecture for a bifurcation structure of the infinite dimensional Kuramoto model. Ergod. Theor. Dyn. Syst. 35, 762–834 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dörfler, F., Bullo, F.: Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators. SIAM J. Control Optim. 50, 1616–1642 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ha, S.Y., Xiao, Q.: Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation. J. Diff. Equ. 259, 2430–2457 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Han, H., Hollot, C.V., Towsley, D., Chait, Y.: Synchronization of TCP Flows in Networks with Small DropTail Buffers, Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference (2005)Google Scholar
  5. 5.
    Ichinomiya, T.: Frequency synchronization in a random oscillator network. Phys. Rev. E 70, 026116 (2004)CrossRefGoogle Scholar
  6. 6.
    Kawamura, Y., Nakao, H., Kuramoto, Y.: Noise-induced turbulence in nonlocally coupled oscillators. Phys. Rev. E 75, 036209 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kuramoto, Y.: International symposium on mathematical problems in theoretical physics. In: Araki H. (ed), Lecture Notes in Physics, vol. 39, pp. 420–422. Springer, New York (1975)Google Scholar
  8. 8.
    Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence (Springer Series in Synergetics, 19). Springer, Berlin (1984)CrossRefzbMATHGoogle Scholar
  9. 9.
    Lavrentiev, M., Spigler, R.S.: Existence and uniqueness of solutions to the Kuramoto-Sakaguchi nonlinear parabolic integrodifferential equation. Diff. Integr. Equ. 13, 649–667 (2000)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Lavrentiev, M., Spigler, R.S., Tani, A.: Existence, uniqueness, and regularity for the Kuramoto-Sakaguchi equation with unboundedly supported frequency distribution. Diff. Integr. Equ. 27, 879–892 (2014)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Shiogai, Y., Kuramoto, Y.: Wave propagation in nonlocally coupled oscillators with noise. Prog. Thoer. Phys. Suppl. 150, 435–438 (2003)CrossRefGoogle Scholar
  12. 12.
    Temam, R.: Infinite-dimensional dynamical systems in mechanics and physics, 2nd edn., Appl. Math. Sci. 68, (1997) (Springer)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.NTT Network Technology LaboratoriesTokyoJapan
  2. 2.Department of MathematicsKeio UniversityYokohamaJapan

Personalised recommendations