Skip to main content

Modulation of Wnt/β-Catenin Signaling by Chemoprevention

  • Chapter
  • First Online:
Cancer and Chemoprevention: An Overview
  • 661 Accesses

Abstract

More than 100 years ago, this theory that natural compounds might impede cancer development was stated and the effect of small natural compounds obtained from plants and fungi was examined on tumor development and growth in various laboratories. Presently, many labs are working to check the efficacy of these small molecules in modulating various signaling pathways and regulations of basic cellular functions like cell proliferation, cell differentiation, and apoptosis. Hence upgrading the current knowledge and deciphering the molecular mechanisms that underlie the action of these small molecules, thereby, provide clear understanding of signaling pathways in healthy and pathological states (Lustig and Behrens 2003; Nathália et al. 2014; Phelps et al. 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal BB et al (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23:363–398

    CAS  PubMed  Google Scholar 

  • Amado NG et al (2011) Flavonoids: potential Wnt/beta-catenin signaling modulators in cancer. Life Sci 89:545–554

    Article  CAS  PubMed  Google Scholar 

  • Amado NG, Predes D, Moreno MM et al (2014) Flavonoids and Wnt/β-catenin signaling: potential role in colorectal cancer therapies. Int J Mol Sci 15:12094–12106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baur JA et al (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    Article  CAS  PubMed  Google Scholar 

  • Beveridge TH, Li TS, Drover JC (2002) Phytosterol content in American ginseng seed oil. J Agric Food Chem 50:744–750

    Article  CAS  PubMed  Google Scholar 

  • Bishayee A (2009) Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev Res (Phila) 2:409–418

    Article  CAS  Google Scholar 

  • Brabletz T et al (2000) beta-Catenin induces invasive growth by activating matrix metalloproteinases in colorectal carcinoma. Verh Dtsch Ges Pathol 84:175–181

    CAS  PubMed  Google Scholar 

  • Carter O et al (2007) Comparison of white tea, green tea, epigallocatechin- 3-gallate, and caffeine as inhibitors of PhIP-induced colonic aberrant crypts. Nutr Cancer 58:60–65

    Article  CAS  PubMed  Google Scholar 

  • Chandra SH, Wacker I, Appelt UK et al (2012) A common role for various human truncated adenomatous polyposis coli isoforms in the control of beta-catenin activity and cell proliferation. PLoS One 7:e34479

    Article  CAS  PubMed  Google Scholar 

  • Chesire DR et al (2000) Detection and analysis of beta-catenin mutations in prostate cancer. Prostate 45:323–334

    Article  CAS  PubMed  Google Scholar 

  • Chien AJ et al (2009) A Wnt survival guide: from flies to human disease. J Invest Dermatol 129:1614–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480

    Article  CAS  PubMed  Google Scholar 

  • Dashwood WM et al (2002) Inhibition of beta-catenin/Tcf activity by white tea, green tea, and epigallocatechin-3-gallate EGCG: minor contribution of H2O2 at physiologically relevant EGCG concentrations. Biochem Biophys Res Commun 296:584–588

    Article  CAS  PubMed  Google Scholar 

  • De LA, Coste A et al (1998) Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci U S A 95:8847–8851

    Article  Google Scholar 

  • Elcheva I, Tarapore RS, Bhatia N et al (2008) Overexpression of mRNA-binding protein CRDBP in malignant melanomas. Oncogene 27:5069–5074

    Article  CAS  PubMed  Google Scholar 

  • Emami KH, Nguyen C, Ma H et al (2004) Proc Natl Acad Sci U S A 101:12682–12687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein J et al (2010) Curcumin as a therapeutic agent: the evidence from in vitro, animal and human studies. Br J Nutr 103:1545–1557

    Article  CAS  PubMed  Google Scholar 

  • Fearon ER et al (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  CAS  PubMed  Google Scholar 

  • Fremont L (2000) Biological effects of resveratrol. Life Sci 66:663–673

    Article  CAS  PubMed  Google Scholar 

  • Fu S et al (2010) Development of curcumin as an epigenetic agent. Cancer 116:4670–4676

    Article  CAS  PubMed  Google Scholar 

  • Gatz SA et al (2008) Resveratrol modulates DNA double-strand break repair pathways in an ATM/ATR-p53- and -Nbs1-dependent manner. Carcinogenesis 29:519–527

    Article  CAS  PubMed  Google Scholar 

  • Gerstein AV et al (2002) APC/CTNNB1 (beta-catenin) pathway alterations in human prostate cancers. Genes Chromosomes Cancer 34:9–16

    Article  CAS  PubMed  Google Scholar 

  • Giles RH, van Es JH, Clevers H (2003) Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653:1–24

    CAS  PubMed  Google Scholar 

  • Goodall J et al (2004) Brn-2 expression controls melanoma proliferation and is directly regulated by beta-catenin. Mol Cell Biol 24:2915–2922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta SC et al (2010) Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev 29:405–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hecht A et al (2000) The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J 19:1839–1850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hlubek F et al (2007) Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer. Int J Cancer 121:1941–1948

    Article  CAS  PubMed  Google Scholar 

  • Hope C et al (2008) Low concentrations of resveratrol inhibit Wnt signal throughput in colon-derived cells: implications for colon cancer prevention. Mol Nutr Food Res 52:S52–S61

    PubMed  PubMed Central  Google Scholar 

  • Huang SM, Mishina YM, Liu SA et al (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461:614–620

    Article  CAS  PubMed  Google Scholar 

  • Iozzo RV et al (1995) Aberrant expression of the growth factor Wnt-5A in human malignancy. Cancer Res 55:3495–3499

    CAS  PubMed  Google Scholar 

  • Iwao K et al (1998) Activation of the beta-catenin gene by interstitial deletions involving exon 3 in primary colorectal carcinomas without adenomatous polyposis coli mutations. Cancer Res 58:1021–1026

    CAS  PubMed  Google Scholar 

  • Jaiswal AS et al (2002) Beta-catenin-mediated transactivation and cell cell adhesion pathways are important in curcumin diferuylmethane induced growth arrest and apoptosis in colon cancer cells. Oncogene 21:8414–8427

    Article  CAS  PubMed  Google Scholar 

  • Jemal A et al (2009) Cancer statistics. CA Cancer J Clin 59:225–249

    Article  PubMed  Google Scholar 

  • Karim R et al (2004) The significance of the Wnt pathway in the pathology of human cancers. Pathology 36:120–128

    Article  CAS  PubMed  Google Scholar 

  • Kelloff GJ et al (1994a) Progress in cancer chemoprevention: perspectives on agent selection and short-term clinical intervention trials. Cancer Res 54:2015s–2024s

    CAS  PubMed  Google Scholar 

  • Kelloff GJ et al (1994b) Strategy and planning for chemopreventive drug development: clinical development plans. Chemoprevention Branch and Agent Development Committee National Cancer Institute. J Cell Biochem Suppl 20:55–62

    Article  CAS  PubMed  Google Scholar 

  • Khan N et al (2008) Cancer chemoprevention through dietary antioxidants: progress and promise. Antioxid Redox Signal 10:475–510

    Article  CAS  PubMed  Google Scholar 

  • Kim J et al (2006) Suppression of Wnt signaling by the green tea compound epigallocatechin 3-gallate EGCG in invasive breast cancer cells Requirement of the transcriptional repressor. J Biol Chem 281:10865–10875

    Article  CAS  PubMed  Google Scholar 

  • Kinzler KW et al (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170

    Article  CAS  PubMed  Google Scholar 

  • Kitaeva MN et al (1997) Mutations in beta-catenin are uncommon in colorectal cancer occurring in occasional replication error-positive tumors. Cancer Res 57:4478–4481

    CAS  PubMed  Google Scholar 

  • Koch A et al (1999) Childhood hepatoblastomas frequently carry a mutated degradation targeting box of the beta-catenin gene. Cancer Res 59:269–273

    CAS  PubMed  Google Scholar 

  • Koesters R et al (1999) Mutational activation of the beta-catenin proto oncogene is a common event in the development of Wilms’ tumors. Cancer Res 59:3880–3882

    CAS  PubMed  Google Scholar 

  • Korinek V et al (1997) Constitutive transcriptional activation by a beta catenin- Tcf complex in APC−/− colon carcinoma. Science 275:1784–1787

    Article  CAS  PubMed  Google Scholar 

  • Kumar A et al (1998) Curcumin (diferuloylmethane) inhibition of tumor necrosis factor (TNF)-mediated adhesion of monocytes to endothelial cells by suppression of cell surface expression of adhesion molecules and of nuclear factor-kappa B activation. Biochem Pharmacol 55:775–783

    Article  CAS  PubMed  Google Scholar 

  • Kusafuka T et al (2002) Codon 45 of the beta-catenin gene, a specific mutational target site of Wilms’ tumor. Int J Mol Med 10:395–399

    CAS  PubMed  Google Scholar 

  • Lambert JD et al (2010) The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys 501:65–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larue L et al (2003) Beta-catenin in the melanocyte lineage. Pigment Cell Res 16:312–317

    Article  CAS  PubMed  Google Scholar 

  • Larue L et al (2006) The Wnt/Beta-catenin pathway in melanoma. Front Biosci 11:733–742

    Article  CAS  PubMed  Google Scholar 

  • Lee TK et al (2007) Lupeol suppresses cisplatin-induced nuclear factor kappa B activation in head and neck squamous cell carcinoma and inhibits local invasion and nodal metastasis in an orthotopic nude mouse model. Cancer Res 67:8800–8809

    Article  CAS  PubMed  Google Scholar 

  • Li Y et al (2008) Regulation of Akt/FOXO3a/GSK-3beta/AR signaling network by isoflavone in prostate cancer cells. J Biol Chem 283:27707–27716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima LM, Perazzo FF, Tavares C et al (2007) Anti-inflammatory and analgesic activities of the ethanolic extracts from Zanthoxylum riedelianum (Rutaceae) leaves and stem bark. J Pharm Pharmacol 59:1151–1158

    Article  CAS  PubMed  Google Scholar 

  • Lin JK (2007) Molecular targets of curcumin. Adv Exp Med Biol 595:227–243

    Article  PubMed  Google Scholar 

  • Lira Wde M et al (2008) Modulatory effect of Byrsonima basiloba extracts on the mutagenicity of certain direct and indirect-acting mutagens in Salmonella typhimurium assays. J Med Food 11:111–119

    Article  PubMed  CAS  Google Scholar 

  • Lustig B, Behrens J (2003) The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol 129:199–221

    CAS  PubMed  Google Scholar 

  • Maiti S et al (2000) Frequent association of beta-catenin and WT1 mutations in Wilms tumors. Cancer Res 60:6288–6292

    CAS  PubMed  Google Scholar 

  • Maliakal PP et al (2001) Tea consumption modulates hepatic drug metabolizing enzymes inWistar rats. J Pharm Pharmacol 53:569–577

    Article  CAS  PubMed  Google Scholar 

  • Mandal A, Bhatia D, Bishayee A (2013) Simultaneous disruption of estrogen receptor and Wnt/β-catenin signaling is involved in methyl amooranin-mediated chemoprevention of mammary gland carcinogenesis in rats. Mol Cell Biochem 384:239–250

    Article  CAS  PubMed  Google Scholar 

  • Melgarejo E et al (2010) Targeting polyamines and biogenic amines by green tea epigallocatechin-3-gallate. Amino Acids 38:519–523

    Article  CAS  PubMed  Google Scholar 

  • Michils G et al (2005) Large deletions of the APC gene in 15 % of mutation-negative patients with classical polyposis (FAP): a Belgian study. Hum Mutat 25:125–134

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi Y, Nagase H, Ando H et al (1992) Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet 1:229–233

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi Y et al (1998) Activation of the beta-catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3. Cancer Res 58:2524–2527

    CAS  PubMed  Google Scholar 

  • Morin PJ (1997) Activation of β-catenin-Tcf signaling in colon cancer by mutations in β catenin or APC. Science 275:1787–1790

    Article  CAS  PubMed  Google Scholar 

  • Morin PJ (1999) beta-catenin signaling and cancer. Bioessays 21:1021–1030

    Article  CAS  PubMed  Google Scholar 

  • Morin PJ et al (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790

    Article  CAS  PubMed  Google Scholar 

  • Munemitsu S et al (1995) Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci U S A 92:3046–3050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata M et al (2001) Accumulation of beta-catenin in the cytoplasm and the nuclei during the early hepatic tumorigenesis. Hepatol Res 21:126–135

    Article  CAS  PubMed  Google Scholar 

  • Narayan S (2004) Curcumin, a multi-functional chemopreventive agent, blocks growth of colon cancer cells by targeting beta-catenin-mediated transactivation and cell-cell adhesion pathways. J Mol Histol 35:301–307

    Article  CAS  PubMed  Google Scholar 

  • Nathália GA, Danilo P, Marcela M et al (2014) Flavonoids and Wnt/β-catenin signaling: potential role in colorectal cancer therapies. Int J Mol Sci 15:12094–12106

    Article  CAS  Google Scholar 

  • Nigam N et al (2007) Preventive effects of lupeol on DMBA induced DNA alkylation damage in mouse skin. Food Chem Toxicol 45:2331–2335

    Article  CAS  PubMed  Google Scholar 

  • Nishisho I et al (1991) Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253:665–669

    Article  CAS  PubMed  Google Scholar 

  • Orner GA et al (2004) Tumor-suppressing effects of antioxidants from tea. J Nutr 134:3177S–3178S

    CAS  PubMed  Google Scholar 

  • Park CH et al (2005) Inhibition of beta-catenin-mediated transactivation by flavanone in AGS gastric cancer cells. Biochem Biophys Res Commun 331:1222–1228

    Article  CAS  PubMed  Google Scholar 

  • Pendurthi UR et al (1999) Resveratrol, a polyphenolic compound found in wine, inhibits tissue factor expression in vascular cells: a possible mechanism for the cardiovascular benefits associated with moderate consumption of wine. Arterioscler Thromb Vasc Biol 19:419–426

    Article  CAS  PubMed  Google Scholar 

  • Phelps RA, Broadbent TJ, Stafforini DM et al (2009) New perspectives on APC control of cell fate and proliferation in colorectal cancer. Cell Cycle 8:2549–2556

    Article  CAS  PubMed  Google Scholar 

  • Prasad S et al (2008) Protective effects of lupeol against benzo(a)pyrene induced clastogenicity in mouse bone marrow cells. Mol Nutr Food Res 52:1117–1120

    Article  CAS  PubMed  Google Scholar 

  • Prasad CP et al (2009) Potent growth suppressive activity of curcumin in human breast cancer cells: modulation of Wnt/beta-catenin signaling. Chem Biol Interact 181:263–271

    Article  CAS  PubMed  Google Scholar 

  • Rimm DL et al (1999) Frequent nuclear/cytoplasmic localization of beta-catenin without exon 3 mutations in malignant melanoma. Am J Pathol 154:325–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins PF et al (1996) A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med 183:1185–1192

    Article  CAS  PubMed  Google Scholar 

  • Roccaro AM et al (2008) Resveratrol exerts antiproliferative activity and induces apoptosis in Waldenstrom’s macroglobulinemia. Clin Cancer Res 14:1849–1858

    Article  CAS  PubMed  Google Scholar 

  • Romagnolo B et al (1999) Intestinal dysplasia and adenoma in transgenic mice after overexpression of an activated beta-catenin. Cancer Res 59:3875–3879

    CAS  PubMed  Google Scholar 

  • Rubinfeld B et al (1997) Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science 275:1790–1792

    Article  CAS  PubMed  Google Scholar 

  • Ryu MJ et al (2008) Natural derivatives of curcumin attenuate the Wnt/ beta-catenin pathway through down-regulation of the transcriptional coactivator p300. Biochem Biophys Res Commun 377:1304–1308

    Article  CAS  PubMed  Google Scholar 

  • Saleem M (2009) Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett 285:109–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleem M et al (2004) Lupeol modulates NF-kappaB and PI3K/Akt pathways and inhibits skin cancer in CD-1mice. Oncogene 23:5203–5214

    Article  CAS  PubMed  Google Scholar 

  • Saleem M et al (2005a) A novel dietary triterpene Lupeol induces fas mediated apoptotic death of androgen-sensitive prostate cancer cells and inhibits tumor growth in a xenograft model. Cancer Res 65:11203–11213

    Article  CAS  PubMed  Google Scholar 

  • Saleem M et al (2005b) Lupeol, a fruit and vegetable based triterpene, induces apoptotic death of human pancreatic adenocarcinoma cells via inhibition of Ras signaling pathway. Carcinogenesis 26:1956–1964

    Article  CAS  PubMed  Google Scholar 

  • Saleem M et al (2008) Lupeol inhibits growth of highly aggressive human metastatic melanoma cells in vitro and in vivo by inducing apoptosis. Clin Cancer Res 14:2119–2127

    Article  CAS  PubMed  Google Scholar 

  • Saleem M et al (2009a) Lupeol inhibits proliferation of human prostate cancer cells by targeting beta-catenin signaling. Carcinogenesis 30:808–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleem M et al (2009b) Lupeol triterpene, a novel diet-based microtubule targeting agent: disrupts survivin/cFLIP activation in prostate cancer cells. Biochem Biophys Res Commun 388:576–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar FH et al (2009) Cellular signaling perturbation by natural products. Cell Signal 21:1541–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel R, Naishadham D, Jemal A (2013) Cancer statistics. CA Cancer J Clin 63:11–30

    Article  PubMed  Google Scholar 

  • Son M et al (2010) Ethanol extract of Lycoris radiata induces cell death in B16F10 melanoma via p38-mediated AP-1 activation. Oncol Rep 24:473–478

    PubMed  Google Scholar 

  • Sparks AB, Morin PJ, Vogelstein B et al (1998) Mutational analysis of the APC/β-catenin/Tcf pathway in colorectal cancer. Cancer Res 58:1130–1134

    CAS  PubMed  Google Scholar 

  • Stoner GD et al (1995) Polyphenols as cancer chemopreventive agents. J Cell Biochem Suppl 22:169–180

    Article  CAS  PubMed  Google Scholar 

  • Su Y et al (2007) Expression profiling of rat mammary epithelial cells reveals candidate signaling pathways in dietary protection from mammary tumors. Physiol Genomics 30:8–16

    Article  CAS  PubMed  Google Scholar 

  • Su Y et al (2009) Soy isoflavone genistein upregulates epithelial adhesion molecule E-cadherin expression and attenuates beta-catenin signaling in mammary epithelial cells. Carcinogenesis 30:331–339

    Article  PubMed  CAS  Google Scholar 

  • Takemaru KI et al (2000) The transcriptional co activator CBP interacts with beta-catenin to activate gene expression. J Cell Biol 149:249–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarapore RS, Siddiqui IA, Saleem M et al (2010) Specific targeting of Wnt/beta-catenin signaling in human melanoma cells by a dietary triterpene lupeol. Carcinogenesis 31:1844–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas SL et al (2010) Activation of the p38 pathway by a novel monoketone curcumin analog, EF24, suggests a potential combination strategy. Biochem Pharmacol 80:1309–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson JA et al (1995) The brn-2 gene regulates the melanocytic phenotype and tumorigenic potential of human melanoma cells. Oncogene 11:691–700

    CAS  PubMed  Google Scholar 

  • Tsai SH et al (1999) Suppression of nitric oxide synthase and the downregulation of the activation of NFkappaB in macrophages by resveratrol. Br J Pharmacol 126:673–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tulayakul P et al (2007) The effect of feeding piglets with the diet containing green tea extracts or coumarin on in vitro metabolism of aflatoxin B1 by their tissues. Toxicon 50:339–348

    Article  CAS  PubMed  Google Scholar 

  • Ulrich S et al (2005) Molecular mechanisms of the chemopreventive effects of resveratrol and its analogs in carcinogenesis. Mol Nutr Food Res 49:452–461

    Article  CAS  PubMed  Google Scholar 

  • Verras M et al (2006) Roles and regulation of Wnt signaling and beta catenin in prostate cancer. Cancer Lett 237:22–32

    Article  CAS  PubMed  Google Scholar 

  • Voeller HJ et al (1998) Beta-catenin mutations in human prostate cancer. Cancer Res 58:2520–2523

    CAS  PubMed  Google Scholar 

  • Waaler J, Machon O, Tumova L et al (2012) Cancer Res 72:2822–2832

    Article  CAS  PubMed  Google Scholar 

  • Weeraratna ATA (2005) Wnt-er wonderland--the complexity of Wnt signaling in melanoma. Cancer Metastasis Rev 24:237–250

    Article  CAS  PubMed  Google Scholar 

  • Wharton KA Jr et al (2001) Vertebrate proteins related to Drosophila Naked Cuticle bind Dishevelled and antagonize Wnt signaling. Dev Biol 234:93–106

    Article  CAS  PubMed  Google Scholar 

  • Wilken R et al (2011) Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 10:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F et al (2002) Linking beta-catenin to androgen-signaling pathway. J Biol Chem 277:11336–11344

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zhang W, Evans PM et al (2006) Biol Chem 281:17751–17757

    Article  CAS  Google Scholar 

  • You YJ, Nam NH, Kim Y et al (2003) Antiangiogenic activity of lupeol from Bombax ceiba. Phytother Res 17:341–344

    Article  CAS  PubMed  Google Scholar 

  • Zhou H et al (2011) The targets of curcumin. Curr Drug Targets 12:332–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Rashid, S. (2017). Modulation of Wnt/β-Catenin Signaling by Chemoprevention. In: Cancer and Chemoprevention: An Overview. Springer, Singapore. https://doi.org/10.1007/978-981-10-2579-2_13

Download citation

Publish with us

Policies and ethics