Skip to main content

Formulation and Commercialization of Rhizobia: Asian Scenario

  • Chapter
  • First Online:
Agriculturally Important Microorganisms

Abstract

The symbiotic agreement of rhizobia with leguminous plants is making a valuable contribution to agriculture primarily as nitrogen fixers and secondarily as plant growth promoters by their key role as phosphate solubilizers, growth hormone producers, abiotic and biotic stress relievers, and host-plant resistance enhancer. In the so far identified 14 genera and 105 species of rhizobia, a huge number of research reports were reported in various aspects. Genetically modified rhizobia with desirable traits have also been surfed to a large extent. Besides their potentiality, the commercial success of rhizobia as a bio-inoculant is poor, because most of the inoculants produced worldwide are of poor or suboptimal quality. Though voluminous data and better understanding are available on various formulation technologies, longevity and efficacy of the final product are loosed at the farmer’s end. This book chapter is focused to address various types of formulations applicable to rhizobia, quality control for longevity, gaps in knowledge on bringing the native potential of rhizobia during formulation, and critical control points to be considered during its development. The chapter also shares ICRISAT’s experience in its rhizobial collection, formulation developments, and efficacy testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari D, Kaneto M, Itoh K, Suyama K, Pokharel BB, Gaihre YK (2012) Genetic diversity of soybean-nodulating rhizobia in Nepal in relation to climate and soil properties. Plant Soil 357(1–2):131–145

    Article  CAS  Google Scholar 

  • Afzal A, Bano A (2008) Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum L.). Int J Agric Biol 10:85–88

    CAS  Google Scholar 

  • Albareda M, Rodriguez-Navarro DN, Camacho M, Temprano FJ (2008) Alternatives to peat as a carrier for rhizobia inoculant: solid and liquid formulations. Soil Biol Biochem 40:2771–2779

    Article  CAS  Google Scholar 

  • Albareda M, Rodriguez-Navarro DN, Temprano FJ (2009) Use of Sinorhizobium (Ensifer) fredii for soybean inoculants in south Spain. Eur J Agron 30:205–211

    Article  Google Scholar 

  • Allen EK, Allen ON (1950) Biochemical and symbiotic properties of the rhizobia. Bacteriol Rev 14:273–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amarger N, Hirsch P, Klingmüller W (2001) Assessing the risks involved in the release of genetically manipulated microorganisms. In: Kessler C, Economidis I (eds) EC-sponsored research on safety of genetically modified organisms. A review of results. European Communities, Luxembourg, pp 62–64

    Google Scholar 

  • Ansari PG, Rao DLN, Pal KK (2014) Diversity and phylogeny of soybean rhizobia in central India. Ann Microbiol 64(4):1553–1565

    Article  Google Scholar 

  • Argal MS, Rawat AK, Aher SB, Rajput PS (2015) Bioefficacy and shelf life of Rhizobium leguminosarum loaded on different carriers. Appl Biol Res 17(2):1–7

    Article  Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  • Arora NK, Khare E, Naraian R, Maheshwar DK (2008) Sawdust as a superior carrier for production of multipurpose bioinoculant using plant growth-promoting rhizobial and pseudomonad strains and their impact on productivity of Trifolium repens. Curr Sci 95:90–94

    Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378(1–2):1–33

    Article  CAS  Google Scholar 

  • Ben Rebah F, Tyagi RD, Prevost D (2002a) Wastewater sludge as a substrate for growth and carrier for rhizobia: the effect of storage conditions on survival of Sinorhizobium meliloti. Bioresour Technol 83:145–151

    Article  CAS  PubMed  Google Scholar 

  • Ben Rebah F, Tyagi RD, Prevost D, Surampalli RY (2002b) Wastewater sludge as a new medium for rhizobial growth. Water Qual Res J Can 37:353–370

    CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Biate DL, Kumar LV, Ramadoss D, Kumari A, Naik S, Reddy KK, Annapurna K (2014) Genetic diversity of soybean root nodulating bacteria. In: Maheshwari DK (ed) Bacterial diversity in sustainable agriculture. Springer, Cham, pp 131–145

    Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassan F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    Article  CAS  PubMed  Google Scholar 

  • Bosworth AH, Williams MK, Albrecht KA, Kwiatkowski R, Beynon J, Hankinson TR, Ronson CW, Cannon F, Wacek TJ, Triplett EW (1994) Alfalfa yield response to inoculation with recombinant strains of Rhizobium meliloti with an extra copy of dctABD and/or modified nifA expression. Appl Environ Microbiol 60:3815–3832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bramley RGV, Ellis N, Nable RO, Garside AL (1996) Changes in soil chemical properties under long-term sugar cane monoculture and their possible role in sugar yield decline. Aust J Soil Sci 34:967–984

    Article  CAS  Google Scholar 

  • Brockwell J, Bottomley PJ, Thies JE (1995) Manipulation of rhizobia microflora for improving legume productivity and soil fertility: a critical assessment. Plant Soil 174:143–180

    Article  CAS  Google Scholar 

  • Bullard GK, Roughley RJ, Pulsford DJ (2005) The legume inoculant industry and inoculant quality control in Australia: 1953–2003. Aust J Exp Agric 45:127–140

    Article  Google Scholar 

  • Burton JC (1979) Rhizobium species. In: Peppler HJ, Perlman D (eds) Microbial technology: Microbial processes. Academic, New York, pp 29–58

    Chapter  Google Scholar 

  • Camerini S, Senatore B, Lonardo E, Imperlini E, Bianco C, Moschetti G, Rotino GL, Campion B, Defez R (2008) Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development. Arch Microbiol 190:67–77

    Article  CAS  PubMed  Google Scholar 

  • Carson KC, Meyer JM, Dilworth MJ (2000) Hydroxamate siderophore of root nodule bacteria. Soil Biol Biochem 32:11–21

    Article  CAS  Google Scholar 

  • Catroux G, Hartmann A, Revellin C (2001) Trends in rhizobial inoculant production and use. Plant Soil 230(1):21–30

    Article  CAS  Google Scholar 

  • Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz J Microbiol 38:128–130

    Article  Google Scholar 

  • Chao WL, Alexander M (1984) Mineral soils as carriers for Rhizobium inoculants. Appl Environ Microbiol 47:94–97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clayton GW, Rice WA, Lupwayi NZ, Johnston AM, Lafond GP, Grant CA, Walley F (2004a) Inoculant formulation and fertilizer nitrogen effects on field pea: crop yield and seed quality. Can J Plant Sci 84:89–96

    Article  Google Scholar 

  • Clayton GW, Rice WA, Lupwayi NZ, Johnston AM, Lafond GR, Grant CA, Walley F (2004b) Inoculant formulation and fertilizer nitrogen effects on field pea: Nodulation, N2 fixation and nitrogen partitioning. Can J Plant Sci 84:79–88

    Article  Google Scholar 

  • Crawford SL, Berryhill DL (1983) Survival of Rhizobium phaseoli in coal-based legume inoculants applied to seeds. Appl Environ Microbiol 45:703–705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daza A, Santamaria C, Rodriguez-Navarro DN, Camacho M, Orive R, Temprano F (2000) Perlite as a carrier for bacterial inoculants. Soil Biol Biochem 32:567–572

    Article  CAS  Google Scholar 

  • Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology – a review. Soil Biol Biochem 36:1275–1288

    Article  CAS  Google Scholar 

  • Deshwal VK, Pandey P, Kang SC, Maheshwari DK (2003) Rhizobia as a biological control agent against soil borne plant pathogenic fungi. Ind J Exp Biol 41:1160–1164

    CAS  Google Scholar 

  • Dillewijn P, Soto MJ, Villadas PJ, Toro N (2001) Construction and environmental release of a Sinorhizobium meliloti strain genetically modified to be more competitive for alfalfa nodulation. Appl Environ Microbiol 67:3860–3865

    Article  PubMed  PubMed Central  Google Scholar 

  • Diouf D, Forestier S, Neyra M, Lesueur D (2003) Optimisation of inoculation of Leucaena leucocephala and Acacia mangium with Rhizobium under greenhouse conditions. Ann For Sci 60:379–384

    Article  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Dommergues YR (1995) Nitrogen fixation by trees in relation to soil nitrogen economy. Fertil Res 42(1):215–230

    Article  CAS  Google Scholar 

  • Dommergues YR, Diem HG, Divies C (1979) Polyacrylamide entrapped Rhizobium as an inoculant for legumes. Appl Environ Microbiol 37:779–981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drahos DJ, Hemming BC, McPherson S (1986) Tracking recombinant organisms in the environment: beta-galactosidase as a selectable non-antibiotic marker for fluorescent pseudomonads. Biotechnology 4:439–444

    Article  CAS  Google Scholar 

  • Dube JN, Mahere DP, Bawat AF (1980) Development of coal as a carrier for rhizobial inoculants. Sci Cult 46:304

    Google Scholar 

  • FAOSTAT Data (2016) Food and Agriculture Organization of the United Nations. Statistical database. Accessed at http://faostat3.fao.org/browse/Q/QC/E and, http://faostat3.fao.org/browse/R/RF/E on 8 Mar 2016

  • Fink CR, Waggoner PE, Ausubel F (1999) Nitrogen fertilizer: retrospect and prospect. Proc Natl Acad Sci USA 96:1175–1180

    Article  Google Scholar 

  • Forestier S, Alvarado G, Badjel SB, Lesueur D (2001) Effect of Rhizobium inoculation methodologies on nodulation and growth of Leucaena leucocephala. World J Microbiol Biotechnol 17:359–362

    Article  Google Scholar 

  • Fred EB, Baldwin IL, McCoy E (1932) Root nodule bacteria and leguminous plants. University of Wisconsin Press, Madison

    Google Scholar 

  • Gao TG, Xu YY, Jiang F, Li BZ, Yang JS, Wang ET, Yuan HL (2015) Nodulation characterization and proteomic profiling of Bradyrhizobium liaoningense CCBAU05525 in response to water-soluble humic materials. Scientific reports, 5

    Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Srinivas V (2016) Formulations of plant growth-promoting microbes for field applications. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi. doi:10.1007/978-81-322-2644-4_15

    Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L (2014) Plant growth-promoting rhizobia: Challenges and opportunities. 3 Biotech. doi:10.1007/s13205-014-0241-x

    Google Scholar 

  • Graham PH (1963) Vitamin requirements of root-nodule bacteria. J Gen Microbiol 30:245–248

    Article  CAS  Google Scholar 

  • Graham PH (1992) Stress tolerance in Rhizobium and Bradyrhizobium and nodulation under adverse soil conditions. Can J Microbiol 38:475–484

    Article  CAS  Google Scholar 

  • Graham-Weiss L, Bennett ML, Alan SP (1987) Production of bacterial inoculants by direct fermentation on nutrient-supplemented vermiculite. Appl Environ Microbiol 53(9):2138–2140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2010) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Guthrie FB (1896) Inoculation of soil for leguminous crops. Agric Gaz NSW 7:690–694

    Google Scholar 

  • Halder AK, Chakrabarty PK (1993) Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol 38:325–330

    Article  CAS  Google Scholar 

  • Halder AK, Mishra AK, Bhattacharya P, Chakrabarthy PK (1990) Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol 36:1–92

    Article  Google Scholar 

  • Hamaoui B, Abbadi JM, Burdman S, Rashid A, Sarig S, Okon Y (2001) Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions. Agronomie 21:553–560

    Article  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311(1):1–18

    Article  CAS  Google Scholar 

  • Hirsch PR (1997) Acquisition of genes from indigenous bacteria by inoculant strains at long-term release sites. In: Hoeveler A, Cresti M (eds) Biotechnology programme (1992–1994), final report. European Commission, Luxembourg, pp 231–234

    Google Scholar 

  • Hirsch PR, Spokes JD (1994) Survival and dispersion of genetically modified rhizobia in the field and genetic interactions with native strains. FEMS Microbiol Ecol 15:147–159

    Article  CAS  Google Scholar 

  • Htwe AZ, Yamakawa T, Sarr PS, Sakata T (2015) Diversity and distribution of soybean-nodulating bradyrhizobia isolated from major soybean-growing regions in Myanmar. Afr J Microbiol Res 9(43):2183–2196

    Article  Google Scholar 

  • Huang J, Rozelle S (1995) Environmental stress and grain yields in China. Am J Agric Econ 77:853–864

    Article  Google Scholar 

  • Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413–425

    Article  CAS  Google Scholar 

  • Hynes RK, Jans DC, Bremer E, Lupwayi NZ, Rice WA, Clayton GW, Collins MM (2001) Rhizobium population dynamics in the pea rhizosphere of rhizobial inoculant strain applied in different formulations. Can J Microbiol 47:595–600

    Article  CAS  PubMed  Google Scholar 

  • Iswaran V, Sen A, Apte R (1972) Plant compost as a substitute for peat for legume inoculants. Curr Sci 41:299

    Google Scholar 

  • Jiao YS, Liu YH, Yan H, Wang ET, Tian CF, Chen WX, Guo BL, Chen WF (2015) Rhizobial diversity and nodulation characteristics of the extremely promiscuous legume Sophora flavescens. Mol Plant Microbe Interact 28(12):1338–1352

    Article  CAS  PubMed  Google Scholar 

  • Jiao J, Wu LJ, Zhang B, Hu Y, Li Y, Zhang XX, Guo HJ, Liu LX, Chen W, Zhang Z, Tian CF (2016) MucR is required for transcriptional activation of conserved ion transporters to support nitrogen fixation of Sinorhizobium fredii in soybean nodules. Mol Plant Microbe Interact. doi:http://dx.doi.org/10.1094/MPMI-01-16-0019-R

    Google Scholar 

  • Joosten H (2015) Peatlands, climate change mitigation and biodiversity conservation: An issue brief on the importance of peatlands for carbon and biodiversity conservation and the role of drained peatlands as greenhouse gas emission hotspots, vol 2015727. Nordic Council of Ministers, Denmark

    Google Scholar 

  • Jordan DC (1984) Family III Rhizobiaceae. In: Kneg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, pp 234–244

    Google Scholar 

  • Jung G, Mugnier J, Diem HG, Dommergues YR (1982) Polymer-entrapped Rhizobium as an inoculant for legumes. Plant Soil 65(2):219–231

    Article  CAS  Google Scholar 

  • Kandasamy R, Prasad NN (1971) Lignite as a carrier of rhizobia. Curr Sci 40:496

    Google Scholar 

  • Keyser HH, Somasegaran P, Bohlool BB (1993) Rhizobial ecology and technology. In: Metting EB (ed) Soil microbial ecology: applications in agricultural and environmental management. Marcel Dekker, New York, pp 205–226

    Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    Article  CAS  PubMed  Google Scholar 

  • Kinzig AP, Socolow RH (1995) Is nitrogen fertilizer use nearing a balance? Phys Today 47:24–35

    Article  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, pp 879–882

    Google Scholar 

  • Kostov O, Lynch JM (1998) Composted sawdust as a carrier for Bradyrhizobium, Rhizobium and Azospirillum in crop inoculation. World J Microbol Biol 14:389–397

    Article  Google Scholar 

  • Kremer RJ, Peterson HL (1983) Field evaluation of selected Rhizobium in an improved legume inoculant. Agron J 75:139–143

    Article  Google Scholar 

  • Kulkarni S, Nautiyal CS (2000) Effects of salt and pH stress on temperature tolerant Rhizobium sp. NBRI330 nodulating Prosopis juliflora. Curr Microbiol 40:221–226

    Article  CAS  PubMed  Google Scholar 

  • Lilley AK, Bailey MJ (1997) The acquisition of indigenous plasmids by a genetically marked pseudomonad population colonizing the sugar beet phytosphere is related to local environmental conditions. Appl Environ Microbiol 63:1577–1583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindström K, Mousavi SA (2010) Rhizobium and other N-fixing symbioses. In: Encyclopedia of Life Sciences (ELS). Wiley, Chichester

    Google Scholar 

  • Lindström K, Murwira M, Willems A, Altier N (2010) The biodiversity of beneficial microbe‐host mutualism: the case of rhizobia. Res Microbiol 161(6):453–463

    Article  PubMed  Google Scholar 

  • Mannion AM (1998) Future trends in agriculture: the role of biotechnology. Outlook Agric 27:219–224

    Google Scholar 

  • Maurice S, Beauclair P, Giraud JJ, Sommer G, Hartmann A, Catroux G (2001) Survival and change in physiological state of Bradyrhizobiu mjaponicum in soybean (Glycine max L. Merril) liquid inoculants after long-term storage. World J Microbol Biotechnol 17:635–643

    Article  CAS  Google Scholar 

  • Mishra AC, Pandey VK, Rai VP (2014) Effectiveness of fertilizer doses, liming and Rhizobium inoculation in vegetable pea under acidic soil of Jharkhand. Asian J Hortic 9(1):140–142

    Google Scholar 

  • Naveed M, MehboobI HMB, Ahmad Z (2015) Perspectives of rhizobial inoculation for sustainable crop production. In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 209–239

    Google Scholar 

  • Nehra V, Choudhary M (2015) A review on plant growth-promoting rhizobacteria acting as bioinoculants and their biological approach towards the production of sustainable agriculture. J Appl Nat Sci 7(1):540–556

    Google Scholar 

  • NIIR (2004) The complete technology book on bio-fertilizer and organic farming. National Institute of Industrial Research, New Delhi

    Google Scholar 

  • Okazaki S, Tittabutr P, Teulet A, Thouin J, Fardoux J, Chaintreuil C, Gully D, Arrighi J, Furuta N, Miwa H, Yasuda M, Nouwen N, Teaumroong N, Giraud E (2016) Rhizobium–legume symbiosis in the absence of Nod factors: two possible scenarios with or without the T3SS. ISME J 10:64–74

    Article  CAS  PubMed  Google Scholar 

  • Ozkoc I, Deliveli MH (2001) In vitro inhibition of the mycelial growth of some root rot fungi by Rhizobium leguminosarum biovar phaseoli isolates. Turk J Biol 25:435–445

    Google Scholar 

  • Parke DL, Ornston LN (1984) Nutritional diversity of Rhizobiaceae revealed by auxanography. J Gen Microbiol 130:1743–1750

    CAS  Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF, Rodriguez-Barrueco C, Martınez-Molina E, Velazquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth. Soil Biol Biochem 33:103–110

    Article  CAS  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. MicrobiolMol Biol Rev 64:180–201

    Article  CAS  Google Scholar 

  • Philip K, Jauhri KS (1984) A potential carrier for Rhizobium and Azotobacter 1. Comparative analytical studies of various carrier materials. J Microbiol 139:35–41

    CAS  Google Scholar 

  • Quispel A (1974) The biology of nitrogen fixation. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  • Raja Sekar K, Karmegam N (2010) Earthworm casts as an alternate carrier material for biofertilizers: assessment of endurance and viability of Azotobacter chroococcum, Bacillus megaterium and Rhizobium leguminosarum. Sci Hortic 124:286–289

    Article  Google Scholar 

  • Reeve W, Ardley J, Tian R, Eshragi L, Yoon JW, Ngamwisetkun P, Seshadri R, Ivanova NN, Kyrpides NC (2015) A genomic encyclopedia of the root nodule bacteria: Assessing genetic diversity through a systematic biogeographic survey. Stand Genomic Sci 10:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Remigi P, Zhu J, Young JPW, Masson-Boivin C (2016) Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts. Trends Microbiol 24(1):63–75

    Article  CAS  PubMed  Google Scholar 

  • Revellin C, Meunier G, Giraud J-J, Sommer G, Wadoux P, Catroux G (2000) Changes in the physiological and agricultural characteristics of peat-based Bradyrhizobium japonicum inoculants after long-term storage. Appl Microbiol Biotechnol 54:206–211

    Article  CAS  PubMed  Google Scholar 

  • Robleto EA, Kmiecik K, Oplinger ES, Nienhuis J, Triplett EW (1998) Trifolitoxin production increases nodulation competitiveness of Rhizobium etli CE3 under agricultural conditions. Appl Environ Microbiol 64:2630–2633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ronson CW, Bosworth A, Genova M, Gusbrandsen S, Hankinson T, Kwiatkowski R, Robie C, Sweeney P, Szeto W, Williams M, Zablotowitcz R (1990) Field release of genetically-engineered Rhizobium meliloti and Bradyrhizobium japonicum strains. In: Gressoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation: achievements and perspectives. Chapman and Hall, New York/London, pp 397–403

    Chapter  Google Scholar 

  • Rozelle S, Veeck G, Huang JK (1997) The impact of environmental degradation on grain production in China 1975–1990. Econ Geog 73:44–66

    Article  Google Scholar 

  • Sadasivam KV, Tyagi RK, Ramarethinam S (1986) Evaluation of some agricultural wastes as carriers for bacterial inoculants. Agric Wastes 17:301–306

    Article  Google Scholar 

  • Savant NK, Datnoff LE, Snyder GH (1997) Depletion of plant-available silicon in soils: A possible cause of declining rice yields. Comm Soil Sci Plant Nutr 28:1245–1252

    Article  CAS  Google Scholar 

  • Scupham AJ, Bosworth AH, Ellis WR, Wacek TJ, Albrecht KA, Triplett EW (1996) Inoculation with Sinorhizobium meliloti RMBPC-2 increases alfalfa yield compared with inoculation with a non-engineered wild-type strain. Appl Environ Microbiol 62:4260–4262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Senthilkumar M, Madhaiyan M, Sundaram SP, Kannaiyan S (2009) Intercellular colonization and growth promoting effects of Methylobacterium sp. with plant-growth regulators on rice (Oryza sativa L. CvCO-43). Microbiol Res 164:92–104

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Manchanda G, Singh RN, Srivastava AK, Dubey RC (2016) Selection of alkalotolerant and symbiotically efficient chickpea nodulating rhizobia from North‐West Indo Gangetic Plains. J Basic Microbiol 56(1):14–25

    Article  CAS  PubMed  Google Scholar 

  • Singleton PW, Bohlool BB, Nakao PL (1992) Legume response to rhizobial inoculation in the tropics: Myths and realities. In: Lal R, Sanchez PA (eds) Myths and science of soils of the tropics. Soil Science Society of America and American Society of Agronomy Special Publication, Madison, pp 135–155

    Google Scholar 

  • Singleton P, Keyser H, Sande E (2002) Development and evaluation of liquid inoculants. In: Herridge D (ed) Inoculants and nitrogen fixation of legumes in Vietnam. ACIAR Proceedings, Canberra, pp 52–66

    Google Scholar 

  • Sparrow SD, Ham GE (1983) Nodulation, N2 fixation, and seed yield of navy beans as influenced by inoculant rate and inoculant carrier. Agron J 75:20–24

    Article  Google Scholar 

  • Temprano FJ, Albareda M, Camacho M, Daza A, Santamaría C, Rodríguez-Navarro DN (2002) Survival of several Rhizobium/Bradyrhizobium strains on different inoculant formulations and inoculated seeds. Int Microbiol 5:81–86

    Article  CAS  PubMed  Google Scholar 

  • Thomas PK, Venkataramanan C, Vasu K (1974) Quality and quantity of peat material reserves in the Nilgiris. Proc Ind Natl Sci Acad 40:608

    CAS  Google Scholar 

  • Thompson JA (1992) Consultant report to UNFAO. IND/86/003. FAO, Rome

    Google Scholar 

  • Unno Y, Shinano T, Minamisawa K, Ikeda S (2015) Bacterial community shifts associated with high abundance of Rhizobium spp. in potato roots under macronutrient-deficient conditions. Soil Biol Biochem 80:232–236

    Article  CAS  Google Scholar 

  • Van Elsas JD, Heijnen CE (1990) Methods for the introduction of bacteria into soil: a review. Biol Fert Soils 10(2):127–133

    Article  Google Scholar 

  • Van Nieuwenhove C, Van Holm L, Kulasooriya SA, Vlassak K (2000) Establishment of Azorhizobium caulinodans in the rhizosphere of wetland rice (Oryza sativa L.). Biol Fert Soils 31:143–149

    Article  Google Scholar 

  • Vance CP (1998) Legume symbiotic nitrogen fixation: Agronomic aspects. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae, molecular biology of model plant-associated bacteria. Kluwer Academic Publishers, Dordrecht, pp 509–530

    Google Scholar 

  • Vessey JK (2004) Benefits of inoculating legume crops with rhizobia in the northern Great Plains. Retrieved 2/2005, from http://www.plantmanagementnetwork.org/pub/cm/review/2004/inoculant/

  • Vessey JK, Pawlowski K, Bergman B (2004) Root-based N2-fixing symbioses: Legumes, actinorhizal plants, Parasponia sp. and cycads. Plant Soil 266:205–230

    Article  CAS  Google Scholar 

  • Vessey KJ (2003) Plant growth-promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vincent JM (1962) Influence of calcium and magnesium on the growth of Rhizobium. J Gen Microbiol 28:653–663

    Article  CAS  PubMed  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Walley F, Clayton G, Gan Y, Lafond G (2004) Performance of rhizobial inoculant formulations in the field. Retrieved 2/2005, from http://www.plantmanagementnetwork.org/pub/cm/review/2004/inoculant/

    Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by green gram plants. Chemosphere 70:36–45

    Article  CAS  PubMed  Google Scholar 

  • Xavier IJ, Holloway G, Leggett M (2004) Development of rhizobial inoculant formulations. Crop Manage 3(1)

    Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama T, Ohyama T (2007) Current status and future direction of commercial production and use of bio-fertilizers in Japan. Food and Fertilizer Technology Center (FFTC), Taipei

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramaniam Gopalakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Vijayabharathi, R., Sathya, A., Gopalakrishnan, S. (2016). Formulation and Commercialization of Rhizobia: Asian Scenario. In: Singh, H., Sarma, B., Keswani, C. (eds) Agriculturally Important Microorganisms. Springer, Singapore. https://doi.org/10.1007/978-981-10-2576-1_3

Download citation

Publish with us

Policies and ethics