Skip to main content

Potentiality of Herbaspirillum seropedicae as a Platform for Bioplastic Production

  • Chapter
  • First Online:
Microbial Models: From Environmental to Industrial Sustainability

Abstract

Polyhydroxybutyrate (PHB) is a polyhydroxyalkanoate produced by several bacteria as carbon storage and reducing equivalent sink. The production of PHB is a hot topic in biotechnological research due to its properties similar to oil-based plastics, while PHB is readily degradable in the environment. Therefore, PHB is a bio-sustainable alternative for synthetic plastic materials. The main hurdle for PHB use is the cost of fermentative process in large scale, which is still high when compared to industrial processes based in petroleum. The use of cheap biomass feedstocks and industrial by-products can potentially reduce costs of microbial PHB production. In addition, the application of metabolic engineering to fine-tune metabolic pathways or even create more efficient pathways may yield important gains in PHB production competiveness. In this chapter we will address the potential of the bacterium Herbaspirillum seropedicae as a platform for PHB production, analyzing the functions of genes involved in PHB and carbon metabolism to propose strategies for metabolic engineering of new bacterial strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54(4):450–472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37 (Web Server issue):W202–208. doi:10.1093/nar/gkp335

    Google Scholar 

  • Balsanelli E, Tadra-Sfeir MZ, Faoro H, Pankievicz VCS, de Baura VA, Pedrosa FO, de Souza EM, Dixon R, Monteiro RA (2015) Molecular adaptations of Herbaspirillum seropedicae during colonization of the maize rhizosphere. Environ Microbiol 18:2343–2356. doi:10.1111/1462-2920.12887

    Article  CAS  PubMed  Google Scholar 

  • Batista MB, Sfeir MZ, Faoro H, Wassem R, Steffens MB, Pedrosa FO, Souza EM, Dixon R, Monteiro RA (2013) The Herbaspirillum seropedicae SmR1 Fnr orthologs controls the cytochrome composition of the electron transport chain. Sci Rep 3:2544. doi:10.1038/srep02544

    Article  PubMed  PubMed Central  Google Scholar 

  • Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C (2007) Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum–over expression and modification of G6P dehydrogenase. J Biotechnol 132(2):99–109. doi:10.1016/j.jbiotec.2007.05.026

    Article  CAS  PubMed  Google Scholar 

  • Brigham CJ, Reimer EN, Rha C, Sinskey AJ (2012) Examination of PHB Depolymerases in Ralstonia eutropha: further elucidation of the roles of enzymes in PHB homeostasis. AMB Express 2(1):26. doi:10.1186/2191-0855-2-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catalan AI, Ferreira F, Gill PR, Batista S (2007) Production of polyhydroxyalkanoates by Herbaspirillum seropedicae grown with different sole carbon sources and on lactose when engineered to express the lacZlacY genes. Enz Microb Technol 40(5):1352–1357. doi:10.1016/j.enzmictec.2006.10.008

    Article  CAS  Google Scholar 

  • Centeno-Leija S, Huerta-Beristain G, Giles-Gomez M, Bolivar F, Gosset G, Martinez A (2014) Improving poly-3-hydroxybutyrate production in Escherichia coli by combining the increase in the NADPH pool and acetyl-CoA availability. Antonie Van Leeuwenhoek 105(4):687–696. doi:10.1007/s10482-014-0124-5

    Article  CAS  PubMed  Google Scholar 

  • Chou ME, Yang MK (2010) Analyses of binding sequences of the PhaR protein of Rhodobacter sphaeroides FJ1. FEMS Microbiol Lett 302(2):138–143. doi:10.1111/j.1574-6968.2009.01836.x

    Article  CAS  PubMed  Google Scholar 

  • Chubatsu LS, Monteiro RA, Souza EM, Oliveira MAS, Yates MG, Wassem R, Bonatto AC, Huergo LF, Steffens MBR, Rigo LU, Pedrosa dFO (2011) Nitrogen fixation control in Herbaspirillum seropedicae. Plant Soil 356(1):197–207. doi:10.1007/s11104-011-0819-6

    Google Scholar 

  • Fang H, Xie X, Xu Q, Zhang C, Chen N (2013) Enhancement of cytidine production by coexpression of gnd, zwf, and prs genes in recombinantEscherichia coli CYT15. Biotechnol Lett 35(2):245–251. doi:10.1007/s10529-012-1068-3

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42(Database issue):D222–D230. doi:10.1093/nar/gkt1223

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285. doi:10.1093/nar/gkv1344

    Article  PubMed  Google Scholar 

  • Huang M, Wang Y, Liu J, Mao Z (2011) Multiple strategies for metabolic engineering of Escherichia coli for efficient production of coenzyme Q10. Chin J Chem Eng 19(2):316–326. doi:10.1016/S1004-9541(11)60171-7

    Article  CAS  Google Scholar 

  • Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191(10):3195–3202. doi:10.1128/JB.01723-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang LY, Zhang YY, Li Z, Liu JZ (2013) Metabolic engineering of Corynebacterium glutamicum for increasing the production of L-ornithine by increasing NADPH availability. J Ind Microbiol Biotechnol 40(10):1143–1151. doi:10.1007/s10295-013-1306-2

    Article  CAS  PubMed  Google Scholar 

  • Kadouri D, Jurkevitch E, Okon Y (2003) Involvement of the reserve material poly-beta-hydroxybutyrate in Azospirillum brasilense stress endurance and root colonization. Appl Environ Microbiol 69(6):3244–3250. doi:10.1128/AEM.69.6.3244-3250.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadowaki MA, Muller-Santos M, Rego FG, Souza EM, Yates MG, Monteiro RA, Pedrosa FO, Chubatsu LS, Steffens MB (2011) Identification and characterization of PhbF: a DNA binding protein with regulatory role in the PHB metabolism of Herbaspirillum seropedicae SmR1. BMC Microbiol 11:230. doi:10.1186/1471-2180-11-230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JK, Won YJ, Nikoh N, Nakayama H, Han SH, Kikuchi Y, Rhee YH, Park HY, Kwon JY, Kurokawa K, Dohmae N, Fukatsu T, Lee BL (2013) Polyester synthesis genes associated with stress resistance are involved in an insect-bacterium symbiosis. Proc Natl Acad Sci U S A 110(26):E2381–E2389. doi:10.1073/pnas.1303228110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuchta K, Chi L, Fuchs H, Potter M, Steinbuchel A (2007) Studies on the influence of phasins on accumulation and degradation of PHB and nanostructure of PHB granules in R alstonia eutropha H16. Biomacromolecules 8(2):657–662. doi:10.1021/bm060912e

    Article  CAS  PubMed  Google Scholar 

  • Lee WH, Park JB, Park K, Kim MD, Seo JH (2007) Enhanced production of epsilon-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene. Appl Microbiol Biotechnol 76(2):329–338. doi:10.1007/s00253-007-1016-7

    Article  CAS  PubMed  Google Scholar 

  • Lee WH, Chin YW, Han NS, Kim MD, Seo JH (2011) Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli. Appl Microbiol Biotechnol 91(4):967–976. doi:10.1007/s00253-011-3271-x

    Article  CAS  PubMed  Google Scholar 

  • Lim SJ, Jung YM, Shin HD, Lee YH (2002) Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon. J Biosci Bioeng 93(6):543–549. doi:10.1016/S1389-1723(02)80235-3

    Article  CAS  PubMed  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63(1):21–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maehara A, Taguchi S, Nishiyama T, Yamane T, Doi Y (2002) A repressor protein, PhaR, regulates polyhydroxyalkanoate (PHA) synthesis via its direct interaction with PHA. J Bacteriol 184(14):3992–4002. doi:10.1128/JB.184.14.3992-4002.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez I, Zhu J, Lin H, Bennett GN, San KY (2008) Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab Eng 10(6):352–359. doi:10.1016/j.ymben.2008.09.001

    Article  CAS  PubMed  Google Scholar 

  • Mathias AL, Rigo LU, Funayama S, Pedrosa FO (1989) L-arabinose metabolism in Herbaspirillum seropedicae. J Bacteriol 171(9):5206–5209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monteiro R, Balsanelli E, Wassem R, Marin A, Brusamarello-Santos LC, Schmidt M, Tadra-Sfeir M, Pankievicz VS, Cruz L, Chubatsu L, Pedrosa F, Souza E (2012) Herbaspirillum-plant interactions: microscopical, histological and molecular aspects. Plant Soil 356(1–2):175–196. doi:10.1007/s11104-012-1125-7

    Article  CAS  Google Scholar 

  • Muh U, Sinskey AJ, Kirby DP, Lane WS, Stubbe J (1999) PHA synthase from C hromatium vinosum: cysteine 149 is involved in covalent catalysis. Biochem 38(2):826–837. doi:10.1021/bi9818319

    Article  CAS  Google Scholar 

  • Pankievicz VC, Camilios-Neto D, Bonato P, Balsanelli E, Tadra-Sfeir MZ, Faoro H, Chubatsu LS, Donatti L, Wajnberg G, Passetti F, Monteiro RA, Pedrosa FO, Souza EM (2016) RNA-seq transcriptional profiling of Herbaspirillum seropedicaecolonizing wheat (Triticum aestivum) roots. Plant Mol Biol. doi:10.1007/s11103-016-0430-6

    Google Scholar 

  • Pedrosa FO, Monteiro RA, Wassem R, Cruz LM, Ayub RA, Colauto NB, Fernandez MA, Fungaro MH, Grisard EC, Hungria M, Madeira HM, Nodari RO, Osaku CA, Petzl-Erler ML, Terenzi H, Vieira LG, Steffens MB, Weiss VA, Pereira LF, Almeida MI, Alves LR, Marin A, Araujo LM, Balsanelli E, Baura VA, Chubatsu LS, Faoro H, Favetti A, Friedermann G, Glienke C, Karp S, Kava-Cordeiro V, Raittz RT, Ramos HJ, Ribeiro EM, Rigo LU, Rocha SN, Schwab S, Silva AG, Souza EM, Tadra-Sfeir MZ, Torres RA, Dabul AN, Soares MA, Gasques LS, Gimenes CC, Valle JS, Ciferri RR, Correa LC, Murace NK, Pamphile JA, Patussi EV, Prioli AJ, Prioli SM, Rocha CL, Arantes OM, Furlaneto MC, Godoy LP, Oliveira CE, Satori D, Vilas-Boas LA, Watanabe MA, Dambros BP, Guerra MP, Mathioni SM, Santos KL, Steindel M, Vernal J, Barcellos FG, Campo RJ, Chueire LM, Nicolas MF, Pereira-Ferrari L, Silva JL, Gioppo NM, Margarido VP, Menck-Soares MA, Pinto FG, Simao Rde C, Takahashi EK, Yates MG (2011) Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet 7(5):e1002064. doi:10.1371/journal.pgen.1002064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peplinski K, Ehrenreich A, Doring C, Bomeke M, Reinecke F, Hutmacher C, Steinbuchel A (2010) Genome-wide transcriptome analyses of the ‘Knallgas’ bacterium Ralstonia eutropha H16 with regard to polyhydroxyalkanoate metabolism. Microbiology 156(Pt 7):2136–2152. doi:10.1099/mic.0.038380-0

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer D, Jendrossek D (2012) Localization of poly(3-hydroxybutyrate) (PHB) granule-associated proteins during PHB granule formation and identification of two new phasins, PhaP6 and PhaP7, in Ralstonia eutropha H16. J Bacteriol 194(21):5909–5921. doi:10.1128/JB.00779-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potter M, Madkour MH, Mayer F, Steinbuchel A (2002) Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiology 148(Pt 8):2413–2426

    Article  CAS  PubMed  Google Scholar 

  • Poulsen BR, Nohr J, Douthwaite S, Hansen LV, Iversen JJ, Visser J, Ruijter GJ (2005) Increased NADPH concentration obtained by metabolic engineering of the pentose phosphate pathway in Aspergillus niger. FEBS J 272(6):1313–1325. doi:10.1111/j.1742-4658.2005.04554.x

    Article  CAS  Google Scholar 

  • Quelas JI, Mongiardini EJ, Perez-Gimenez J, Parisi G, Lodeiro AR (2013) Analysis of two polyhydroxyalkanoate synthases in Bradyrhizobium japonicum USDA 110. J Bacteriol 195(14):3145–3155. doi:10.1128/JB.02203-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehm BH (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376(Pt 1):15–33. doi:10.1042/BJ20031254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saratale GD, Oh MK (2015) Characterization of poly-3-hydroxybutyrate (PHB) produced from Ralstonia eutropha using an alkali-pretreated biomass feedstock. Int J Biol Macromol 80:627–635. doi:10.1016/j.ijbiomac.2015.07.034

    Article  CAS  PubMed  Google Scholar 

  • Shi F, Li K, Huan X, Wang X (2013) Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and L-isoleucine biosynthesis in Corynebacterium glutamicum sp. lactofermentum. Appl Biochem Biotechnol 171(2):504–521. doi:10.1007/s12010-013-0389-6

    Article  CAS  PubMed  Google Scholar 

  • Spaans SK, Weusthuis RA, van der Oost J, Kengen SW (2015) NADPH-generating systems in bacteria and archaea. Front Microbiol 6:742. doi:10.3389/fmicb.2015.00742

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinbuchel A, Hein S (2001) Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. Adv Biochem Eng Biotechnol 71:81–123

    CAS  PubMed  Google Scholar 

  • Steinbuchel A, Hustede E, Liebergesell M, Pieper U, Timm A, Valentin H (1992) Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiol Rev 9(2–4):217–230

    Article  CAS  PubMed  Google Scholar 

  • Stephens C, Christen B, Fuchs T, Sundaram V, Watanabe K, Jenal U (2007) Genetic analysis of a novel pathway for D-xylose metabolism in Caulobacter crescentus. J Bacteriol 189(5):2181–2185. doi:10.1128/jb.01438-06

    Article  CAS  PubMed  Google Scholar 

  • Tamoi M, Ishikawa T, Takeda T, Shigeoka S (1996) Enzymic and molecular characterization of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Synechococcus PCC 7942: resistance of the enzyme to hydrogen peroxide. Biochem J 316(Pt 2):685–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Z, Xiao C, Zhuang Y, Chu J, Zhang S, Herron PR, Hunter IS, Guo M (2011) Improved oxytetracycline production in Streptomyces rimosus M4018 by metabolic engineering of the G6PDH gene in the pentose phosphate pathway. Enz Microb Technol 49(1):17–24. doi:10.1016/j.enzmictec.2011.04.002

    Article  CAS  Google Scholar 

  • Tirapelle EF, Muller-Santos M, Tadra-Sfeir MZ, Kadowaki MA, Steffens MB, Monteiro RA, Souza EM, Pedrosa FO, Chubatsu LS (2013) Identification of proteins associated with polyhydroxybutyrate granules from Herbaspirillum seropedicae SmR1 – old partners, new players. PLoS One 8(9):e75066. doi:10.1371/journal.pone.0075066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trainer MA, Charles TC (2006) The role of PHB metabolism in the symbiosis of rhizobia with legumes. Appl Microbiol Biotechnol 71(4):377–386. doi:10.1007/s00253-006-0354-1

    Article  CAS  PubMed  Google Scholar 

  • Trainer MA, Capstick D, Zachertowska A, Lam KN, Clark SR, Charles TC (2010) Identification and characterization of the intracellular poly-3-hydroxybutyrate depolymerase enzyme PhaZ of Sinorhizobium meliloti. BMC Microbiol 10:92. doi:10.1186/1471-2180-10-92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchino K, Saito T, Jendrossek D (2008) Poly(3-hydroxybutyrate) (PHB) depolymerase PhaZa1 is involved in mobilization of accumulated PHB in Ralstonia eutropha H16. Appl Environ Microbiol 74(4):1058–1063. doi:10.1128/AEM.02342-07

    Article  CAS  PubMed  Google Scholar 

  • Verho R, Richard P, Jonson PH, Sundqvist L, Londesborough J, Penttila M (2002) Identification of the first fungal NADP-GAPDH from Kluyveromyces lactis. Biochemistry 41(46):13833–13838. doi:10.1021/bi0265325

    Article  CAS  PubMed  Google Scholar 

  • Verho R, Londesborough J, Penttila M, Richard P (2003) Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 69(10):5892–5897. doi:10.1128/AEM.69.10.5892-5897.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhang YH (2009) Overexpression and simple purification of the Thermotoga maritima 6-phosphogluconate dehydrogenase in Escherichia coli and its application for NADPH regeneration. Microb Cell Fact 8:30. doi:10.1186/1475-2859-8-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Sheng X, Equi RC, Trainer MA, Charles TC, Sobral BW (2007) Influence of the poly-3-hydroxybutyrate (PHB) granule-associated proteins (PhaP1 and PhaP2) on PHB accumulation and symbiotic nitrogen fixation in Sinorhizobium meliloti Rm1021. J Bacteriol 189(24):9050–9056. doi:10.1128/JB.01190-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, San KY, Bennett GN (2013) Improvement of NADPH bioavailability in Escherichia coli by replacing NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP (+)-dependent GapB from Bacillus subtilis and addition of NAD kinase. J Ind Microbiol Biotechnol 40(12):1449–1460. doi:10.1007/s10295-013-1335-x

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama F, Yamamoto M, Hashimoto W, Murata K (2015) Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions. Bioengineered 6(4):209–217. doi:10.1080/21655979.2015.1040209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to CNPq, INCT-Fixação Biológica de Nitrogênio, CAPES, and Fundação Araucária for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Maltempi de Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Batista, M.B., Müller-Santos, M., Pedrosa, F.d.O., de Souza, E.M. (2016). Potentiality of Herbaspirillum seropedicae as a Platform for Bioplastic Production. In: Castro-Sowinski, S. (eds) Microbial Models: From Environmental to Industrial Sustainability. Microorganisms for Sustainability, vol 1. Springer, Singapore. https://doi.org/10.1007/978-981-10-2555-6_2

Download citation

Publish with us

Policies and ethics