Skip to main content

The Contribution of the Use of Azospirillum sp. in Sustainable Agriculture: Learnings from the Laboratory to the Field

  • Chapter
  • First Online:
Microbial Models: From Environmental to Industrial Sustainability

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 1))

Abstract

Azospirillum sp. is one of the best-studied genus of plant growth-promoting rhizobacteria at present. These bacteria are able to colonize hundreds of plant species and significantly improve their growth, development, and productivity under field conditions. Different microbial abilities have been described to explain the plant growth regulation by Azospirillum sp.; clearly, a single mechanism is mostly not responsible for the full effect observed on inoculated plants, so the bacterial mode of action is currently better explained as an additive and selective effect. The most studied mechanism proposed for Azospirillum sp. to explain plant growth promotion of inoculated plants is the ability to produce several phytohormones and other related molecules with the capacity to promote plant growth or enhance the plant response to an environmental stressing condition. One of the most important achievements obtained from the research is the utilization of azospirilla commercial inoculants in approximately 3.5 million ha mainly cultivated with cereal crops in South America. Recently published reports of Azospirillum spp. inoculation of dryland crops showed a mean grain response of 10 % with greater benefits in winter (14.0 %) than in summer cereals (9.5 %) or legumes (6.6 %). In general, the increase of crop production could be obtained 70 % of the time, explained in part not only due to the complex interaction between the modes of action of Azospirillum sp. and plants but also by the multiplicity of abiotic stress conditions that the microbes help to mitigate. Azospirilla behavior leads to the theory of multiple mechanisms acting in sequential or cumulative patterns. Also, part of the variability of the plant response could be related to the different methods of inoculation (farmer or industrial seed treatments, in-furrow, foliar, or soil-sprayed applications) as well as the interaction with crop management practices related with the occurrence of abiotic limitations for crop growth (i.e., irrigation, fertilization, genotypes, combination with other beneficial microbes, etc.). But, under strong stressful growing conditions (i.e., severe droughts, major nutrients limitations, etc.), these responses are barely observed. Azospirillum sp. inoculation promotes corn (Zea mays L.) productivity, and this response may be related with the increase in the root development that increases the soil volume that the plant uses to explore for nutrients and water acquisition. The crop responses to the inoculation are greater in plant attributes defined during early growth than in those from late reproductive crop development stages. The combined inoculation of legumes with rhizobia and azospirilla, among other beneficial soil microorganisms, could over-improve the performance of the plants, compared with a single inoculation, due to the complementary biological processes of both microbes. Although the contribution of the co-inoculation with rhizobia and azospirilla on the productivity of diverse legume crops and pastures is promising, the available information under large production conditions is still limited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balandreau J (2002) The spermosphere model to select for plant growth promoting bacteria. In: Kennedy IR, Choudhury ATMA (eds) Biofertilisers in action. Rural Industries Research and Development Corporation, Barton, pp 55–63

    Google Scholar 

  • Baldani V, Alvarez M, Baldani J, Döbereiner J (1986) Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant Soil 90:35–46

    Article  Google Scholar 

  • Bally R, Thomas-Bauzon D, Heulin T, Balandreau J (1983) Determination of the most frequent N2 fixing bacteria in the rice rhizosphere. Can J Microbiol 29:881–887

    Article  Google Scholar 

  • Bashan Y, de Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes growth – a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Bashan Y, Holguín G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    Article  CAS  Google Scholar 

  • Bashan Y, Levanony H (1990) Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can J Microbiol 36:591–608

    Article  CAS  Google Scholar 

  • Bashan Y, Ream Y, Levanony H, Sade A (1989) Nonspecific responses in plant growth, yield, and root colonization of non cereal crop plants to inoculation with Azospirillum brasilense Cd. Can J Bot 67:1317–1324

    Article  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassán F, Luna V (2007) Phytohormones production by three strains of Bradyrhizobium japonicum, and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    Article  CAS  PubMed  Google Scholar 

  • Bottini R, Fulchieri M, Pearce D, Pharis R (1989) Identification of gibberellins A1, A3, and Iso-A3 in cultures of A. lipoferum. Plant Physiol 90:45–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassán F, Maiale S, Masciarelli O, Vidal A, Luna V, Ruiz O (2009a) Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur J Soil Biol 45:12–19

    Article  CAS  Google Scholar 

  • Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009b) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E 109 promote seed germination and early seedling growth, independently or co-inoculated in maize (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35

    Article  CAS  Google Scholar 

  • Cassán F, Spaepen S, Vanderleyden J (2010) Indole-3-acetic acid biosynthesis by Azospirillum brasilense Az39 and its regulation under biotic and abiotic stress conditions.In: Abstract of 20th International Conference on Plant Growth Substances p 85

    Google Scholar 

  • Cassán F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant growth promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33:440–459

    Article  CAS  Google Scholar 

  • Charyulu P, Fourcassie F, Barbouche A, Rondro Harisoa L, Omar A, Weinhard P, Marie R, Balandreau J (1985) Field inoculation of rice using in vitro selected bacterial and plant genotypes. In: Klingmüller W (ed) Azospirillum III: genetics, physiology, ecology. Springer-Verlag, Berlin, pp 163–179

    Chapter  Google Scholar 

  • Cohen A, Bottini R, Piccoli P (2008) Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regul 54:97–103

    Article  CAS  Google Scholar 

  • Creus C, Sueldo R, Barassi C (1997) Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiol Biochem 35:939–944

    CAS  Google Scholar 

  • Creus C, Graziano M, Casanovas E, Pereyra A, Simontacchi M, Puntarulo S, Barassi C, Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221:297–303

    Article  CAS  PubMed  Google Scholar 

  • de Morais TP, de Brito CH, Brandao AM, Resende WS (2016) Inoculation of maize with Azospirillum brasilense in the seed furrow. Rev Ciênc Agron 47:290–298

    Article  Google Scholar 

  • De Vleesschauwer D, Höfte M (2009) Rhizobacteria-induced systemic resistance. Plant Innate Immun 51:223–281

    Google Scholar 

  • Díaz-Zorita M (2012) Avaliacao da producao de milho (Zea mays L.) inoculado com Azospirillum brasilense na Argentina. In: Zagatto Paterniani MEAG, Pereira Duarte A, Tsunechiro y A. (eds) Diversidade e Innovações na Cadeia Produtiva de Milho e Sorgo na Era dos Transgênicos. ed. Instituto Agronômico – Associação Brasileira de Milho e Sorgo, Campinas (SP, Brazil), pp 529–536

    Google Scholar 

  • Díaz-Zorita M, Fernández-Canigia MV (2009) Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. Eur J Soil Biol 45:3–11

    Article  Google Scholar 

  • Díaz-Zorita M, Baliña RM, Fernández Canigia MV (2012a) Azospirillum brasilense enhances alfalfa productivity: field evaluation. In: Pérez JC, Soler Arango J, Posada Uribe LF (eds) PGPR. 9th International and 1st Latinamerican PGPR Workshop. “Returning to our roots”. Quirama, Medellín (Colombia), June 3–8, 2012

    Google Scholar 

  • Díaz-Zorita M, Micucci FG, Fernández-Canigia MV (2012b). Field performance of a seed treatment with Azospirillum brasilense on corn productivity. In: Pérez JC, Soler Arango J, Posada Uribe LF (eds) PGPR. 9th International and 1st Latinamerican PGPR workshop. “Returning to our roots”. Quirama, Medellín (Colombia), June 3–8, 2012

    Google Scholar 

  • Díaz-Zorita M, Fernández-Canigia MV, Bravo OA, Berger A, Satorre EH (2015) Field evaluation of extensive crops inoculated with Azospirillum sp. In: Cassan FD, Okon Y, Creus CM (eds) Handbook for Azospirillum, technical issues and protocols. Springer International Publishing, Cham, pp 435–445

    Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Vande Broek A, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155–164

    Article  CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879

    Google Scholar 

  • Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonzation and in planta nitrogen fixation by a Herbaspirillum sp. Isolated from wild rice species. Appl Environ Microbiol 67:5285–5293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Habbasha S, Tawfik M, El Kramany M (2013) Comparative efficacy of different bio-chemical foliar applications on growth, yield and yield attributes of some wheat cultivars. World J Agric Sci 9:345–353

    Google Scholar 

  • Esquivel-Cote R, Ramírez-Gama R, Tsuzuki-Reyes G, Orozco-Segovia A, Huante P (2010) Azospirillum lipoferum strain AZm5 containing 1-aminocyclopropane-1-carboxylic acid deaminase improves early growth of tomato seedlings under nitrogen deficiency. Plant Soil 337:65–75

    Article  CAS  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.) isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Fukami J, Nogueira MA, Araujo RS, Hungria M (2016) Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express 6:3. doi:10.1186/s13568-015-0171-y, 13 pp

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García de Salomone IE (2012) Microorganismos promotores del crecimiento vegetal. IAH 5:12–16

    Google Scholar 

  • García de Salamone IE, Dobereiner J (1996) Maize genotype effects on the response to Azospirillum inoculation. Biol Fertil Soils 21:193–196

    Article  Google Scholar 

  • Gassman W, Appel HM (2016) The interface between abiotic and biotic stress responses. J Exp Bot 67:2023–2024

    Article  CAS  Google Scholar 

  • Glick B, Shah S, Li J, Penrose D, Moffatt B (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol 44:833–843

    Article  PubMed  Google Scholar 

  • Govindarajan M, Balandreau J, Kwon S, Weon H, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37

    Article  PubMed  Google Scholar 

  • Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14

    Article  CAS  Google Scholar 

  • Horemans S, Koninck K, Neuray J, Hermans R, Vlassak K (1986) Production of plant growth substances by Azospirillum sp. and other rhizophere bacteria. Symbiosis 2:341–346

    CAS  Google Scholar 

  • Hungria M (2011) Inoculação com Azospirillum brasilense: inovação em rendimento a baixo custo. EMBRAPA Soja, Londrina (PR, Brazil), Documentos 325, 38 pp

    Google Scholar 

  • Hungria M, Nogueira MA, Silva Araujo R (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49:791–801

    Article  Google Scholar 

  • Islam M, Sattar M, Ashrafuzzaman M, Saud H, Uddin M (2012) Improvement of yield potential of rice through combined application of biofertilizer and chemical nitrogen. Afr J Microbiol Res 6:745–750

    Google Scholar 

  • Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H, Mitsui H et al (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17:37–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapulnik Y (1991) Plant growth promoting Rhizobacteria. In: Waisel Y, Eshel A, Kafkafi V (eds) Plant roots, the hidden half. Marcel Dekker, New York, pp 717–729

    Google Scholar 

  • Kapulnik Y, Okon Y, Henis Y (1985) Changes in root morphology of wheat caused by Azospirillum inoculation. Can J Microbiol 31:881–887

    Article  Google Scholar 

  • Kennedy I, Pereg-Gerk L, Wood C, Deaker R, Gilchrist K, Katupitiya S (1997) Biological nitrogen fixation in nonleguminous field crops: facilitating the evolution between Azospirillum and wheat. Plant Soil 194:65–79

    Article  CAS  Google Scholar 

  • Khalid A, Sultana S, Arshad M, Mahmood S, Mahmood T, Siddique M (2011) Performance of auxin producing rhizobacteria for improving growth and yield of wheat and rice grown in rotation under field conditions. Int J Agric Appl Sci 3:44–50

    Google Scholar 

  • Kloepper J, Schroth M (1978) Plant growth-promoting rhizobacteria in radish. In: Proceedings of the 4th international conference on plant pathogenic bacteria. Vol 2. INRA, Angers, France pp 879–882

    Google Scholar 

  • Kloepper J, Lifshitz R, Schroth M (1989) Pseudomonas inoculants to benefit plant production. ISI Atlas Sci Anim Plant Sci 8:60–64

    Google Scholar 

  • Kolb W, Martin P (1985) Response of plant roots to inoculation with Azospirillum brasilense and to application of indoleacetic acid. In: Klingmüller W (ed) Azospirillum III: genetics, physiology, ecology. Springer, Berlin, pp 215–221

    Chapter  Google Scholar 

  • Lana M, Dartora J, Marini D, Hann J (2012) Inoculation with Azospirillum, associated with nitrogen fertilization in maize. Rev Ceres Vicosa 59:399–405

    Article  CAS  Google Scholar 

  • Leon G (1986) Siderophores: Their biochemistry and possible role in the biocontrol of plant pathogens. Ann Rev Phytopathol 24:187–209

    Article  Google Scholar 

  • Lin S-Y, Hameed A, Shen F-T, Liu Y-C, Hsu Y-H, Shahina M, Lai W-A, Young C-C (2014) Description of Niveispirillum fermenti gen. nov., sp. nov., isolated from a fermentor in Taiwan, transfer of Azospirillum irakense (1989) as Niveispirillum irakense comb. nov. and reclassification of Azospirillum amazonense (1983) as Nitrospirillum amazonense gen. nov. Antonie Van Leeuwenhoek 105:1149–1162

    Article  CAS  PubMed  Google Scholar 

  • Magalhães F, Baldani J, Souto S, Kuykendall J, Döbereiner J (1983) A new acid-tolerant Azospirillum species. An Acad Bras Cienc 55:417–430

    Google Scholar 

  • Martínez-Morales L, Soto-Urzua L, Baca B, Sanchez-Ahedo J (2003) Indole-3-butyric acid (IBA) production in culture medium by wild strain Azospirillum brasilense. FEMS Microbiol Lett 228:167–173

    Article  CAS  PubMed  Google Scholar 

  • Mehnaz S, Kowalik T, Reynolds B, Lazarovits G (2010) Growth promoting effects of corn (Zea mays) bacterial isolates under greenhouse and field conditions. Soil Biol Biochem 42:1848–1856

    Article  CAS  Google Scholar 

  • Naiman A, Latrónico A, García de Salamone I (2009) Inoculation of wheat with Azospirillum brasilense and Pseudomonas fluorescens: impact on the production and rhizosphere microflora. Eur J Soil Biol 45:44–51

    Article  Google Scholar 

  • Naseri R, Moghadam A, Darabi F, Hatami A, Tahmasebei G (2013) The effect of deficit irrigation and Azotobacter chroococcum and Azospirillum brasilense on grain yield, yield components of maize (S.C. 704) as a second cropping in western Iran. Bull Env Pharmacol Life Sci 2:104–112

    Google Scholar 

  • Nelson L, Knowles R (1978) Effect of oxygen and nitrate on nitrogen fixation and denitrification by Azospirillum brasilense growth in continuous culture. Can J Microbiol 24:1395–1403

    Article  CAS  PubMed  Google Scholar 

  • Okon Y, Labandera-Gonzalez C (1994) Agronomic applications of Azospirillum: an evaluation of 20 years’ worldwide field inoculation. Soil Biol Biochem 26:1591–1606

    Article  CAS  Google Scholar 

  • Okon Y, Heytler P, Hardy W (1983) N2 fixation by Azospirillum brasilense and its incorporation into host Setaria italica. Appl Environ Microbiol 46:694–697

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okumura RS, de Cinque Mariano MD, Dallacort R, Nogueira de Albuquerque A, da Silva Lobato AK, Silva Guedes EM, Ferreira de Oliveira Neto C, Oliveira da Conceição HE, Ruffeil Alves GA (2013) Azospirillum: a new and efficient alternative to biological nitrogen fixation in grasses. J Food Agric Environ 11:1142–1146

    Google Scholar 

  • Ozturk A, Caglar O, Sahin F (2003) Yield response of wheat and barley to inoculation of plant growth promoting rhizobacteria at various levels of nitrogen fertilization. J Plant Nutr Soil Sci 166:262–266

    Article  CAS  Google Scholar 

  • Pedrosa F, Yates G (1984) Regulation of nitrogen fixation (nif) genes of Azospirillum brasilense by nifA and ntrC (glnG) type genes. FEMS Microbiol Lett 23:95–101

    Article  CAS  Google Scholar 

  • Perrig D, Boiero L, Masciarelli O, Penna C, Cassán F, Luna V (2007) Plant growth promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and their implications for inoculant formulation. Appl Microbiol Biotechnol 75:1143–1150

    Article  CAS  PubMed  Google Scholar 

  • Piccoli P, Bottini R (1996) Gibberellins production in A. lipoferum cultures and enhanced by light. Biocell 20:185–190

    CAS  Google Scholar 

  • Prinsen E, Costacurta A, Michiels K, Vanderleyden J, Van Onckelen H (1993) Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Mol Plant Microbe Interact 6:609–615

    Article  CAS  Google Scholar 

  • Puente M, Li C, Bashan Y (2004) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. II. Growth promotion of cactus seedlings. Plant Biol 6:643–650

    Article  CAS  PubMed  Google Scholar 

  • Rivera Botia D, Revale S, Molina R, Gualpa J, Puente M, Maroniche G, Paris G, Baker D, Clavijo B, McLay K, Spaepen S, Perticari A, Vazquez M, Wisniewski-Dye F, Watkins C, Martínez-Abarca Pastor F, Vanderleyden J, Cassán F (2014) Complete genome sequence of the model rhizosphere strain Azospirillum brasilense Az39, successfully applied in agriculture. Genome Announc 2(4), http://dx.doi.org/10.1128/genomeA.00683-14 e00683e14

  • Rodriguez Cáceres EA, Di Ciocco CA, Carletti SM (2008) 25 años de investigación de Azospirillum brasilense Az39 en Argentina (25 years of research about Azospirillum brasilense Az39 in Argentina). In: Cassan FD, García de Salomone I (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiología, Buenos Aires, pp 179–188

    Google Scholar 

  • Sant’Anna F, Almeida L, Cecagno R, Reolon L, Siqueira F, Machado M, Vasconcelos A, Schrank I (2011) Genomic insights into the versatility of the plant growth-promoting bacterium Azospirillum amazonense. BMC Genomics 12:409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saubidet MI, Fatta N, Barneix AJ (2002) The effect of inoculation with Azospirillum brasilense on growth and nitrogen utilization by wheat plants. Plant Soil 245:215–222

    Article  CAS  Google Scholar 

  • Seshadri S, Muthukumarasamy R, Lakshminarasimhan C, Ignacimuthu S (2000) Solubilization of inorganic phosphates by Azospirillum halopraeferans. Curr Sci 79:565–567

    CAS  Google Scholar 

  • Somers E, Ptacek D, Gysegom P, Srinivasan M, Vanderleyden J (2005) Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Appl Environ Microbiol 71:1803–1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Ecol 24:487–506

    Article  CAS  Google Scholar 

  • Strzelczyk E, Kamper M, Li C (1994) Cytokinin-like-substances and ethylene production by Azospirillum in media with different carbon sources. Microbiol Res 149:55–60

    Article  CAS  Google Scholar 

  • Tarrand J, Krieg N, Dobereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov., and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980

    Article  CAS  PubMed  Google Scholar 

  • Thomashow L, Weller D (1996) Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In: Stacey G, Keen N (eds) Plant-microbe interactions. Chapman and Hall, New York, pp 187–235

    Chapter  Google Scholar 

  • Thuler D, Floh E, Handro W, Barbosa H (2003) Beijerinckia derxii releases plant growth regulators and amino acids in synthetic media independent of nitrogenase activity. J Appl Microbiol 95:799–806

    Article  CAS  PubMed  Google Scholar 

  • Tien T, Gaskins M, Hubbell D (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Loon L, Bakker P, Pieterse C (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Veresoglou S, Menexes G (2010) Impact of inoculation with Azospirillum spp. on growth properties and seed yield of wheat: a meta-analysis of studies in the ISI Web of Science from 1981 to 2008. Plant Soil 337:469–480

    Article  CAS  Google Scholar 

  • Wisniewski-Dyé F, Borziak K, Khalsa-Moyers G, Alexandre G, Sukharnikov L et al (2011) Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet 7(12):e1002430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the collaboration of the following researchers for providing valuable information about registered products (brands, production companies, estimated use, etc.) used in this chapter: Carla Louge (SENASA) and Alejandro Perticari (INTA-IMYZA) from Argentina, María Mayans (MAGyP) from Uruguay, and Mariángela Hungria (EMBRAPA) and Solon Cordeiro de Araujo (ANPII) from Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín Díaz-Zorita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Cassán, F., Díaz-Zorita, M. (2016). The Contribution of the Use of Azospirillum sp. in Sustainable Agriculture: Learnings from the Laboratory to the Field. In: Castro-Sowinski, S. (eds) Microbial Models: From Environmental to Industrial Sustainability. Microorganisms for Sustainability, vol 1. Springer, Singapore. https://doi.org/10.1007/978-981-10-2555-6_14

Download citation

Publish with us

Policies and ethics