Skip to main content

Short-Term Evolution of Rhizobial Strains Toward Sustainability in Agriculture

  • Chapter
  • First Online:
Microbial Models: From Environmental to Industrial Sustainability

Abstract

Some rhizobial strains are widely used as biofertilizers substituting inorganic nitrogen fertilization, mainly for legumes. The successful use of rhizobia in agriculture derives from appropriate selection of strains with high capacities to fix nitrogen. However, the selection of more efficient rhizobia is from a limited number of plant growth conditions. In other environments, inoculant strains may exhibit low competitiveness or low nitrogen fixation. We argue here that rhizobial strains are continuously evolving in plants and therefore recommend an approach inspired on experimental evolution studies where strains adapted to particular conditions may be selected. The selection and detection of efficient rhizobial strains should take place under local field conditions in order to obtain superior nitrogen-fixing symbionts. To support our recommendation, we reviewed different examples of experimental evolution in bacteria and summarized results on rhizobial co-inoculation with different microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams J, Rosenzweig F (2014) Experimental microbial evolution: history and conceptual underpinnings. Genomics 104:393–398. doi:10.1016/j.ygeno.2014.10.004

    Google Scholar 

  • Albareda M, Rodriguez-Navarro DN, Camacho M, Temprano FJ (2008) Alternatives to peat as a carrier for rhizobia inoculants: solid and liquid formulations. Soil Biol Biochem 40:2771–2779

    Article  CAS  Google Scholar 

  • Althabegoiti MJ, Lozano L, Torres-Tejerizo G, Ormeño-Orrillo E, Rogel MA, González V, Martínez-Romero E (2012) Genome sequence of Rhizobium grahamii CCGE502, a broad-host-range symbiont with low nodulation competitiveness in Phaseolus vulgaris. J Bacteriol 194:6651–6652. doi:10.1128/JB.01785-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Althabegoiti MJ, Ormeño-Orrillo E, Lozano L, Torres Tejerizo G, Rogel MA, Mora J, Martínez-Romero E (2014) Characterization of Rhizobium grahamii extrachromosomal replicons and their transfer among rhizobia. BMC Microbiol 14:6. doi:10.1186/1471-2180-14-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Bachmann H, Starrenburg MJ, Molenaar D, Kleerebezem M, van Hylckama Vlieg JE (2012) Microbial domestication signatures of Lactococcus lactis can be reproduced by experimental evolution. Genome Res 22:115–124. doi:10.1101/gr.121285.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Zhou X, Smith DL (2003) Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci 43:1774–1781. doi:10.2135/cropsci2003.1774

    Article  Google Scholar 

  • Balderas-Hernández VE, Hernández-Montalvo V, Bolívar F, Gosset G, Martínez A (2011) Adaptive evolution of Escherichia coli inactivated in the phosphotransferase system operon improves co-utilization of xylose and glucose under anaerobic conditions. Appl Biochem Biotechnol 163:485–496. doi:10.1007/s12010-010-9056-3

    Article  CAS  PubMed  Google Scholar 

  • Barcellos FG, Menna P, da Silva Batista JS, Hungria M (2007) Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah soil. Appl Environ Microbiol 73:2635–2643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett RD, MacLean RC, Bell G (2005) Experimental evolution of Pseudomonas fluorescens in simple and complex environments. Am Nat 166:470–480

    Article  PubMed  Google Scholar 

  • Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461:1243–1247

    Article  CAS  PubMed  Google Scholar 

  • Blount ZD, Borland CZ, Lenski RE (2008) Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci U S A 105:7899–7906. doi:10.1073/pnas.0803151105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns TA, Bishop PE, Israel DW (1981) Enhanced nodulation of leguminous plant roots by mixed cultures of Azotobacter vinelandii and Rhizobium. Plant Soil 62:399–412

    Article  Google Scholar 

  • Castro E, Fareleira P, Ferreira E (2016) Nitrogen fixing symbiosis in a sustainable agriculture. In: Hakeem KR, Akhtar MS, Abdullah SNA (eds) Plant, soil and microbes. Volume 1: implications in crop science. Springer, Cham, pp 55–91. ISBN 978-3-319-27453-9

    Google Scholar 

  • Catroux G, Hartmann A, Revellin C (2001) Trends in rhizobial inoculant production and use. Plant Soil 230:21–30

    Article  CAS  Google Scholar 

  • Chanway CP, Hynes RK, Nelson LM (1989) Plant growth-promoting rhizobacteria: effects on growth and nitrogen fixation of lentil (Lens esculenta moench) and pea (Pisum sativum L.). Soil Biol Biochem 21:511–517

    Article  Google Scholar 

  • Chebotar VK, Asis CA, Akao S (2001) Production of growth-promoting substances and high colonization ability of rhizobacteria enhance the nitrogen fixation of soybean when coinoculated with Bradyrhizobium japonicum. Biol Fertil Soils 34:427–432

    CAS  Google Scholar 

  • Conrad TM, Joyce AR, Applebee MK, Barrett CL, Xie B, Gao Y, Palsson BØ (2009) Whole-genome resequencing of Escherichia coli K-12 MG1655 undergoing short-term laboratory evolution in lactate minimal media reveals flexible selection of adaptive mutations. Genome Biol 10:R118. doi:10.1186/gb-2009-10-10-r118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper VS, Lenski RE (2000) The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 407:736–739

    Article  CAS  PubMed  Google Scholar 

  • Cooper VS, Schneider D, Blot M, Lenski RE (2001) Mechanisms causing rapid and parallel losses of ribose catabolism in evolving populations of Escherichia coli B. J Bacteriol 183:2834–2841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dall’Agnol RF, Ribeiro RA, Ormeño-Orrillo E, Rogel MA, Delamuta JR, Andrade DS, Martínez-Romero E, Hungria M (2013) Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. Int J Syst Evol Microbiol 63:4167–4173. doi:10.1099/ijs.0.052928-0

    Google Scholar 

  • Degli Esposti M, Martinez Romero E (2016) A survey of the energy metabolism of nodulating symbionts reveals a new form of respiratory complex I. FEMS Microbiol Ecol 92. doi: 10.1093/femsec/fiw084

    Google Scholar 

  • Delamuta JR, Ribeiro RA, Ormeño-Orrillo E, Melo IS, Martínez-Romero E, Hungria M (2013) Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. Int J Syst Evol Microbiol 63:3342–3351. doi:10.1099/ijs.0.049130-0

    Article  CAS  PubMed  Google Scholar 

  • Epstein B, Branca A, Mudge J, Bharti AK, Briskine R, Farmer AD, Sugawara M, Young ND, Sadowsky MJ, Tiffin P (2012) Population genomics of the facultatively mutualistic bacteria Sinorhizobium meliloti and S. medicae. PLoS Genet 8:e1002868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham PH, Vance CP (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crop Res 65:93–106

    Article  Google Scholar 

  • Guan SH, Gris C, Cruveiller S, Pouzet C, Tasse L, Leru A, Maillard A, Médigue C, Batut J, Masson-Boivin C, Capela D (2013) Experimental evolution of nodule intracellular infection in legume symbionts. ISME J 7:1367–1377. doi:10.1038/ismej.2013.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez-Zamora ML, Martínez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91:117–126

    Article  PubMed  Google Scholar 

  • Hassen AI, Bopape FL, Rong IH, Seane G (2014) Nodulation efficacy of Bradyrhizobium japonicum inoculant strain WB74 on soybean (Glycine max L. Merrill) is affected by several limiting factors. Afr J Microbiol Res 8:2069–2076

    Article  CAS  Google Scholar 

  • Herridge D, Rose I (2000) Breeding for enhanced nitrogen fixation in crop legumes. Field Crop Res 65:229–248

    Article  Google Scholar 

  • Herring CD, Raghunathan A, Honisch C, Patel T, Applebee MK, Joyce AR, Albert TJ, Blattner FR, van den Boom D, Cantor CR, Palsson BØ (2006) Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nat Genet 38:1406–1412

    Article  CAS  PubMed  Google Scholar 

  • Hungria M, Vargas MAT (2000) Environmental factors affecting N fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crop Res 65:151–164

    Article  Google Scholar 

  • Hungria M, Andrade DS, Chueire LMO, Probanza A, Guttierrez-Manero FJ, Megías M (2000) Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol Biochem 32:1515–1528

    Article  CAS  Google Scholar 

  • Hungria M, Franchini JC, Campo RJ, Graham PH (2005) The importance of nitrogen fixation to soybean cropping in South America. In: Werner D, Newton WE (eds) Nitrogen fixation in agriculture, forestry, ecology, and the environment. Springer, Dordrecht, pp 25–42

    Chapter  Google Scholar 

  • Hungria M, Franchini JC, Campo RJ, Crispino CC, Moraes JZ, Sibaldelli RNR, Mendes IC, Arihara J (2006) Nitrogen nutrition of soybean in Brazil: contributions of biological N2 fixation and N fertilizer to grain yield. Can J Plant Sci 86:927–939

    Article  Google Scholar 

  • Huse HK, Kwon T, Zlosnik JE, Speert DP, Marcotte EM, Whiteley M (2010) Parallel evolution in Pseudomonas aeruginosa over 39,000 generations in vivo. MBio 1(4):e00199c. doi:10.1128/mBio.00199-10

    Article  CAS  Google Scholar 

  • Imran A, Mirza MS, Shah TM, Malik KA, Hafeez FY (2015) Differential response of kabuli and desi chickpea genotypes toward inoculation with PGPR in different soils. Front Microbiol 6:859

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirisits MJ, Prost L, Starkey M, Parsek MR (2005) Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 71:4809–4821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kresse AU, Dinesh SD, Larbig K, Römling U (2003) Impact of large chromosomal inversions on the adaptation and evolution of Pseudomonas aeruginosa chronically colonizing cystic fibrosis lungs. Mol Microbiol 47:145–158

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Lad G, Giuntini E, Kaye ME, Udomwong P, Shamsani NJ, Young JP, Bailly X (2015) Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum. Open Biol 5:140133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li DM, Alexander M (1988) Co-inoculation with antibiotic-producing bacteria to increase colonization and nodulation by rhizobia. Plant Soil 108:211–219

    Article  Google Scholar 

  • Liu ZL, Sinclair JB (1993) Colonization of soybean roots by Bacillus megaterium B 153-2-2. Soil Biol Biochem 25:849–855

    Article  Google Scholar 

  • López-Guerrero MG, Ormeño-Orrillo E, Acosta JL, Mendoza-Vargas A, Rogel MA, Ramírez MA, Rosenblueth M, Martínez-Romero J, Martínez-Romero E (2012) Rhizobial extrachromosomal replicon variability, stability and expression in natural niches. Plasmid 68:149–158

    Article  CAS  PubMed  Google Scholar 

  • López-López A, Rogel MA, Ormeño-Orrillo E, Martínez-Romero J, Martínez-Romero E (2010a) Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst Appl Microbiol 33:322–327. doi:10.1016/j.syapm.2010.07.005

    Google Scholar 

  • López-López A, Rosenblueth M, Martínez J, Martínez-Romero E (2010b) Rhizobial symbioses in tropical legumes and non-legumes. In: Soil biology and agriculture in the tropics, Volume 21 of the series Soil Biology. Springer, Heidelberg, pp 163–184

    Chapter  Google Scholar 

  • Lupwayia NZ, Claytonb GW, Ricea WA (2006) Rhizobial inoculants for legume crops. J Crop Improv 15:289–321. doi:10.1300/J411v15n02_09

    Article  CAS  Google Scholar 

  • Mansotra P, Sharma P, Sharma S (2015) Bioaugmentation of Mesorhizobium cicer, Pseudomonas spp. and Piriformospora indica for sustainable chickpea production. Physiol Mol Biol Plant 21:385–393

    Article  Google Scholar 

  • Marchetti M, Capela D, Glew M, Cruveiller S, Chane-Woon-Ming B, Gris C, Timmers T, Poinsot V, Gilbert LB, Heeb P, Médigue C, Batut J, Masson-Boivin C (2010) Experimental evolution of a plant pathogen into a legume symbiont. PLoS Biol 8:e1000280. doi:10.1371/journal.pbio.1000280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchetti M, Jauneau A, Capela D, Remigi P, Gris C, Batut J, Masson-Boivin C (2014) Shaping bacterial symbiosis with legumes by experimental evolution. Mol Plant Microbe Interact 27:956–964

    Article  CAS  PubMed  Google Scholar 

  • Marchetti M, Clerissi C, Yousfi Y, Gris C, Bouchez O, Rocha E, Cruvieller S, Jauneau A, Capela D, Masson‐Boivin C (2016). Experimental evolution of rhizobia may lead to either extra‐or intracellular symbiotic adaptation depending on the selection regime. Mol Ecol doi:10.1111/mec.13895

    Google Scholar 

  • Martínez E, Palacios R, Sánchez F (1987) Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids. J Bacteriol 169:2828–2834

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez L, Caballero-Mellado J, Orozco J, Martínez-Romero E (2003) Diazotrophic bacteria associated with banana (Musa spp.). Plant Soil 257:35–47

    Article  Google Scholar 

  • Martínez-Romero E (2009) Coevolution in Rhizobium-legume symbiosis? DNA Cell Biol 28:361–370. doi:10.1089/dna.2009.0863

    Article  CAS  PubMed  Google Scholar 

  • Menna P, Hungria M (2011) Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer. Int J Syst Evol Microbiol 61:3052–3067. doi:10.1099/ijs.0.028803-0

    Article  CAS  PubMed  Google Scholar 

  • Menna P, Hungria M, Barcellos FG, Bangel EV, Hess PN, Martínez-Romero E (2006) Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Syst Appl Microbiol 29:315–332

    Article  CAS  PubMed  Google Scholar 

  • Mostasso L, Mostasso FL, Dias BG, Vargas MAT, Hungria M (2002) Selection of bean (Phaseolus vulgaris L.) rhizobial strains for the Brazilian Cerrados. Field Crop Res 73:121–132

    Google Scholar 

  • Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 411:948–950. Erratum in: Nature 2001, 412:926

    Article  CAS  PubMed  Google Scholar 

  • Nimnoi P, Pongsilp N, Lumyong S (2014) Co-inoculation of soybean (Glycine max) with actinomycetes and Bradyrhizobium japonicum enhances plant growth, nitrogenase activity and plant nutrition. J Plant Nutr 37:432–446

    Article  CAS  Google Scholar 

  • Oliver A, Cantón R, Campo P, Baquero F, Blázquez J (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1254

    Article  CAS  PubMed  Google Scholar 

  • Ormeño-Orrillo E, Menna P, Almeida LG, Ollero FJ, Nicolás MF, Pains Rodrigues E, Shigueyoshi Nakatani A, Silva Batista JS, Oliveira Chueire LM, Souza RC, Ribeiro Vasconcelos AT, Megías M, Hungria M, Martínez-Romero E (2012a) Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genomics 13:735. doi:10.1186/1471-2164-13-735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ormeño-Orrillo E, Rogel MA, Chueire LM, Tiedje JM, Martínez-Romero E, Hungria M (2012b) Genome sequences of Burkholderia sp. strains CCGE1002 and H160, isolated from legume nodules in Mexico and Brazil. J Bacteriol 194:6927. doi:10.1128/JB.01756-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ormeño-Orrillo E, Servín-Garcidueñas LE, Rogel MA, González V, Peralta H, Mora J, Martínez-Romero J, Martínez-Romero E (2015) Taxonomy of rhizobia and agrobacteria from the Rhizobiaceae family in light of genomics. Syst Appl Microbiol 38:287–291

    Article  PubMed  Google Scholar 

  • Parmar N, Dadarwal KR (1999) Stimulation of nitrogen fixation and induction of flavonoid-like compounds by rhizobacteria. J Appl Microbiol 86:36–44. doi:10.1046/j.1365-2672.1999.00634.x

    Article  CAS  Google Scholar 

  • Peoples MB, Brockwell J, Herridge DF, Rochester IJ, Alves BJR, Urquiaga S, Jensen ES (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48:1–17

    Article  CAS  Google Scholar 

  • Puentes-Téllez PE, Hansen MA, Sørensen SJ, van Elsas JD (2013) Adaptation and heterogeneity of Escherichia coli MC1000 growing in complex environments. Appl Environ Microbiol 79:1008–1017. doi:10.1128/AEM.02920-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puentes-Téllez PE, Kovács ÁT, Kuipers OP, van Elsas JD (2014) Comparative genomics and transcriptomics analysis of experimentally evolved Escherichia coli MC1000 in complex environments. Environ Microbiol 16:856–870. doi:10.1111/1462-2920.12239

    Article  CAS  PubMed  Google Scholar 

  • Rajendran G, Sing F, Desai AJ, Archana G (2008) Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp. Bioresour Technol 99:4544–4550

    Article  CAS  PubMed  Google Scholar 

  • Remans R, Ramaekers L, Schelkens S, Hernandez G et al (2008) Effect of Rhizobium-Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312:25–37

    Google Scholar 

  • Remigi P, Zhu J, Young JP, Masson-Boivin C (2016) Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts. Trends Microbiol 24:63–75. doi:10.1016/j.tim.2015.10.007

    Article  CAS  PubMed  Google Scholar 

  • Rogel MA, Hernández-Lucas I, Kuykendall LD, Balkwill DL, Martinez-Romero E (2001) Nitrogen-fixing nodules with Ensifer adhaerens harboring Rhizobium tropici symbiotic plasmids. Appl Environ Microbiol 67:3264–3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2004) Rhizobium etli maize populations and their competitiveness for root colonization. Arch Microbiol 181:337–344

    Article  CAS  PubMed  Google Scholar 

  • Sarig S, Kapulnik Y, Okon Y (1986) Effect of Azospirillum inoculation on nitrogen fixation and growth of several winter legumes. Plant Soil 90:335–342

    Article  Google Scholar 

  • Schulze J (2004) How are nitrogen fixation rates regulated in legumes? J Plant Nutr Soil Sci 167:125–137

    Article  CAS  Google Scholar 

  • Servín-Garcidueñas LE, Rogel MA, Ormeño-Orrillo E, Zayas del Moral A, Martínez-Romero E (2016) Complete genome sequence of Bradyrhizobium sp. strain CCGELA001, isolated from field nodules of the enigmatic wild bean Phaseolus microcarpus. Genome Announc 4(2):e00126

    Google Scholar 

  • Sessitsch A, Howieson JG, Perret X, Antoun H, Martínez-Romero E (2002) Advances in Rhizobium research. Crit Rev Plant Sci 21:323–378

    Article  CAS  Google Scholar 

  • Sniegowski PD, Gerrish PJ, Lenski RE (1997) Evolution of high mutation rates in experimental populations of E. coli. Nature 387:703–705

    Article  CAS  PubMed  Google Scholar 

  • Sprent JI, Odee DW, Dakora FD (2010) African legumes: a vital but under-utilized resource. J Exp Bot 61:1257–1265

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan M, Holl FB, Petersen DJ (1996) Influence of indoleacetic-acid-producing Bacillus isolates on the nodulation of Phaseolus vulgaris by Rhizobium etli under gnotobiotic conditions. Can J Microbiol 42:1006–1014

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25:13–19

    Article  Google Scholar 

  • Sullivan JT, Ronson CW (1998) Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci U S A 95:5145–5149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tenaillon O, Rodríguez-Verdugo A, Gaut RL, McDonald P, Bennett AF, Long AD, Gaut BS (2012) The molecular diversity of adaptive convergence. Science 335:457–461. doi:10.1126/science.1212986

    Article  CAS  PubMed  Google Scholar 

  • Tenaillon O, Barrick JE, Ribeck N, Deatherage DE, Blanchard JL, Dasgupta A, Wu GC, Wielgoss S, Cruveiller S, Medigue C, Schneider D, Lenski RE (2016) Tempo and mode of genome evolution in a 50,000-generation experiment. Nature 536:165–170 doi:http://dx.doi.org/10.1101/036806

  • Thies JE, Singleton PW, Bohlool BB (1991) Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced rhizobia on field-grown legumes. Appl Environ Microbiol 57:19–28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thuita M, Pypers P, Herrmann L, Okalebo RJ, Othieno C, Muema E, Lesueur D (2012) Commercial rhizobial inoculants significantly enhance growth and nitrogen fixation of promiscuous soyabean variety in Kenyan soils. Biol Fertil Soils 48:87–96

    Article  Google Scholar 

  • Trabelsi D, Mengoni A, Ben Ammar H, Mhamdi R (2011) Effect of on-field inoculation of Phaseolus vulgaris with rhizobia on soil bacterial communities. FEMS Microbiol Ecol 77:211–222

    Article  CAS  PubMed  Google Scholar 

  • Trujillo ME, Bacigalupe R, Pujic P, Igarashi Y, Benito P, Riesco R, Médigue C, Normand P (2014) Genome features of the endophytic actinobacterium Micromonospora lupini strain Lupac 08: on the process of adaptation to an endophytic life style? PLoS ONE 9:e108522. doi:10.1371/journal.pone.0108522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velázquez E, García-Fraile P, Ramírez-Bahena M-H, Rivas R, Martínez-Molina E (2010) Bacteria involved in nitrogen-fixing legume symbiosis: current taxonomic perspective. In: Microbes for Legume Improvement. Springer, Vienna, pp 1–25

    Chapter  Google Scholar 

  • Willems A (2006) The taxonomy of rhizobia: an overview. Plant Soil 287:3–14

    Article  CAS  Google Scholar 

  • Wiser MJ, Ribeck N, Lenski RE (2013) Long-term dynamics of adaptation in asexual populations. Science 342:1364–1367. doi:10.1126/science.1243357

    Article  CAS  PubMed  Google Scholar 

  • Xavier IJ, Holloway G, Legget M (2004) Development of rhizobial inoculant formulations. Crop Manag. doi:10.1094/CM-2004-0301-06-RV

    Google Scholar 

  • Yahalom E, Okon Y, Dovrat A (1987) Azospirillum effects on susceptibility to Rhizobium nodulation and on nitrogen fixation of several forage legumes. Can J Microbiol 33:510–514

    Google Scholar 

  • Young T, Burton MP (1992) Agricultural sustainability: definition and implications for agricultural and trade policy. Published by Food and Agriculture Organization of the United Nations, Rome ISBN 10: 9251030804⁄ ISBN 13: 9789251030806

    Google Scholar 

  • Zahir ZA, Zafar-ul-Hye M, Sajjad S, Sajjad S, Naveed M (2011) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for coinoculation with Rhizobium leguminosarum to improve growth, nodulation, and yield of lentil. Biol Fertil Soils 47:457–465

    Article  CAS  Google Scholar 

Download references

Acknowledgments

To PAPIIT IN 207615 and to CONACYT Problemas Nacionales (project 246999) for SNY. To M. Dunn for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esperanza Martínez Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Martínez, J., Negrete-Yankelevich, S., Godinez, L.G., Reyes, J., Esposti, M.D., Martínez Romero, E. (2016). Short-Term Evolution of Rhizobial Strains Toward Sustainability in Agriculture. In: Castro-Sowinski, S. (eds) Microbial Models: From Environmental to Industrial Sustainability. Microorganisms for Sustainability, vol 1. Springer, Singapore. https://doi.org/10.1007/978-981-10-2555-6_13

Download citation

Publish with us

Policies and ethics