Skip to main content

Wavelet Variants for 2D Analysis

  • Chapter
  • First Online:
Digital Signal Processing with Matlab Examples, Volume 2

Part of the book series: Signals and Communication Technology ((SCT))

  • 6183 Accesses

Abstract

This chapter is devoted to the analysis of 2D signals and/or images, with emphasis on the use of wavelet variants. Many important applications are interested on such methods. In particular, the detection of edges, borders, contours, etc., is suitable for several purposes, like for instance spatially selective filtering (for example, in medical studies that want to have a clearer view of vessels against a noisy image background). By using wavelets, simple methods can be devised for image denoising and compression. The first sections of the chapter focus on how to obtain wavelet decompositions of images. It is noticed that the decomposition would be better if it was adapted to characteristics of the image, to take into account–for instance-certain predominant directions or curves. The central sections of the chapter introduce wavelet versions, like ridgelets, curvelets, contourlets, bandelets, etc. that try to capture these characteristics. The final sections contains experiments about image denoising, and pointers to the literature on applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Adam, Complex Wavelet Transform: Application to Denoising. Ph.D. thesis, Politehnica University of Timisoara and Universitè de Rennes (2010)

    Google Scholar 

  2. M. Alam, T. Howlander, and M. Rahman. Entropy-based image registration method using the curvelet transform. Signal, Image and Video Processing (2012)

    Google Scholar 

  3. P. Alasonati, J. Wassermann, M. Ohrnberger, Signal classification by wavelet-based hidden Markov models: Application to seismic signals of volcanic origin. in Statistics in Volcanology, pp. 1–27 (COSIV, 2006) Chapter 13

    Google Scholar 

  4. A. Aldroubi and M. Unser (eds.), Wavelets in Medicine and Biology (CRC Press, 1996)

    Google Scholar 

  5. S. AlZubi, 3D Multiresolution Statistical Approaches for Accelerated Medical Image and Volume Segmentation. Ph.D. thesis, Brunel University, London (2011)

    Google Scholar 

  6. S. AlZubi, N. Islam, M. Abbod, Multiresolution analysis using wavelet, ridgelet, and curvelet transforms for medical image segmentation. Int. J. Biomedical Imaging, 2011, 1–18, 2011. ID: 136034

    Google Scholar 

  7. K.S. Anant, F.U. Dowla, Wavelet transform methods for phase identification in three-component seismograms. Bull. Seismol. Soc. Am. 87, 1598–1612 (1997)

    MathSciNet  Google Scholar 

  8. S. Arivazhagan, K. Gowri, L. Ganesan, Rotation and scale-invariant texture classification uisng log-polar and ridgelet transform. J. Pattern Recognit. Res. 1, 131–139 (2010)

    Article  Google Scholar 

  9. A. Averbuch, R.R. Coifman, D.L. Donoho, M. Israeli, J. Walden, Fast Slant Stack: A Notion of Radon Transform for Data in a Cartesian Grid Which is Rapidly Computible, Algebraically Exact, Geometrically Faithful and Invertible (Dept. Statistics, Stanford University, USA, Technical report, 2001)

    Google Scholar 

  10. R.H. Bamberger, M.J.T. Smith, A filter bank for the directional decomposition of images: Theory and design. IEEE T. Signal Processing, 40, 4, 882–893 (1992)

    Google Scholar 

  11. D. Balenau (ed.), Discrete Wavelet Transforms—Theory and Applications (InTech, 2011)

    Google Scholar 

  12. D. Balenau (ed.), Advances in Wavelet Theory and Their Applications in Engineering, Physics and Technology (InTech, 2012)

    Google Scholar 

  13. D. Balenau (ed.), Wavelet Transforms and Their Recent Applications in Biology and Geoscience (InTech, 2012)

    Google Scholar 

  14. A.P. Beegan, Wavelet-based image compression using human visual system models. Master’s thesis, Virginia Tech. (2001)

    Google Scholar 

  15. A. Belsak, J. Flasker, Adaptive wavelet method to identify cracks in gears. EURASIP J. Adv. Sign. Process. 1–8 (2010). ID. 879875

    Google Scholar 

  16. C. Bernard, Wavelets and Ill Posed Problems: Optic Flow and Scattered Data Interpolation. Ph.D. thesis, MINES Paris Tech. (1998)

    Google Scholar 

  17. A.A. Bharath, J. Ng, A steerable complex wavelet construction and its application to image denoising. IEEE T. Image Process. 14(7), 948–959 (2005)

    Article  MathSciNet  Google Scholar 

  18. A. Buades, B. Coll, J.M. Morel, A review of image denoising algorithms with a new one. SIAM J. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. E. Candès. Ridgelets: Theory and Applications. Ph.D. thesis, Stanford University (1998)

    Google Scholar 

  20. E. Candès, L. Demanet, D. Donoho, L. Ying, Fast discrete curvelet transforms. Multiscale Model. Simul. SIAM 5, 861–899 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. E.J. Candès, F. Guo, New multiscale transforms, minimum total variation synthesis: Applications to edge-preserving image reconstruction. J. Sign. Process. Image Video Coding Deyond Standards 8(11), 1519–1543 (2002)

    Google Scholar 

  22. P. Carre, E. Andres, Discrete analytical ridgelet transform. Sign. Process. 84(11), 2165–2173 (2004)

    Article  MATH  Google Scholar 

  23. K. Castleman, Digital Image Processing (Pearson, 1995)

    Google Scholar 

  24. M. Castro de Matos, O. Davogustto, C. Cabarcas, K. Marfurt, Improving reservoir geometry by integrating continuous wavelet transform seismic attributes, in Proceedings of the SEG Las Vegas Annual Meeting, pp. 1–5 (2012)

    Google Scholar 

  25. M. Castro de Matos, P.L.M. Manassi, Osorio, P.R. Schroeder Johan, Unsupervised seismic facies analysis using wavelet transform and self-organizing maps. Geophysics 72(1), 9–21 (2007)

    Google Scholar 

  26. A. Chambolle, R.A. DeVore, N.Y. Lee, B.J. Lucier, Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage. IEEE T. Image Process. 7(3), 319–335 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. V. Chandrasekaran, Surflets: A Sparse Representation for Multidimensional Functions Containing Smooth Discontinuities (In Proc. Intl. Symp, Information Theory, 2004)

    Google Scholar 

  28. S.G. Chang, B. Yu, M. Vetterli, Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 9(9), 1532–1546 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. S.G. Chang, B. Yu, M. Vetterli, Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Trans. Image Process. 9(9), 1522–1531 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. V. Chappelier, C. Guillemot, Oriented wavelet transform for image compression and denoising. IEEE T. Image Process. 15(10), 2892–2903 (2006)

    Article  Google Scholar 

  31. P. Chatterjee, Patch-based Image Denoising and Its Performance Limits. Ph.D. thesis, University of California at Santa Cruz (2011)

    Google Scholar 

  32. H. Chauris and T. Nguyen. Seismic demigration/migration in the curvelet domain. Geophysics, 73(2):35–46, 2008.

    Article  Google Scholar 

  33. C.C. Chen, On the selection of image compression algorithms. Proc. IEEE Int. Conf. Pattern Recognit. 2, 1500–1504 (1998)

    Google Scholar 

  34. G.Y. Chen, B. Kégl, Image denoising with complex ridgelets. Pattern Recognit. 40, 578–585 (2007)

    Article  MATH  Google Scholar 

  35. C. Chesneau, J. Fadili, J.L. Starck, Stein block thresholding for image denoising. Appl. Comput. Harmonic Anal. 28, 67–88 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. D. Cho, Image denoising using wavelet transforms. Master’s thesis, Concordia University, Canada (2004)

    Google Scholar 

  37. D. Cho, T.D. Bui, G. Chen, Image denoising based on wavelet shrinkage using neighbor and level dependency. Int. J. Wavelets, Multiresolut. Inf. Process. 7(3), 299–311 (2009)

    Google Scholar 

  38. E. Christophe, W.A. Pearlman, Three-dimensional SPIHT coding of volume images with random access and resolution scalability. EURASIP J. Image Video Process. 2008(id:248905), 1–13 (2008)

    Google Scholar 

  39. W.R. Crum, T. Hartkens, D.L. Hill, Non-rigid image registration: Theory and practice. Br. J. Radiol. 77, 140–153 (2004)

    Article  Google Scholar 

  40. A.L. Cunha, M.N. Do, On two-channel filter banks with directional vanishing moments. IEEE Trans. Image Process. 16(5), 1207–1219 (2007)

    Article  MathSciNet  Google Scholar 

  41. A.L. Cunha, J. Zhou, M.N. Do, The nonsubsampled contourlet transform: Theory, design, and applications. IEEE Trans. Image Process. 15(10), 3089–3101 (2006)

    Article  Google Scholar 

  42. R.D. da Silva, R. Minetto, W.R. Schwartz, Adaptive edge-preserving image denoising using wavelet transforms. Pattern Anal. Appl. 1–14 (2012)

    Google Scholar 

  43. S. Darkner, R. Larsen, M.B. Stegmann, B. Ersboll, Wedgelet enhanced appearance model, in Proceedings of the Computer Vision and Pattern Recognition, Workshop (2004), pp. 177–180

    Google Scholar 

  44. S. Das, M. Chowdhury, M.K. Kundu, Medical image fusion based on ripplet transform type i. Prog. Electromagn. Res. B 30, 355–370 (2011)

    Article  Google Scholar 

  45. C. Delgorge-Rosenberg, C. Rosenberger, Evaluation of medical image compression, in Fotiadis Exarchos, Papadopoulos, editor, Handbook of Research on Advanced Techniques in Diagnostic Imaging and Biomedical Applications (IGI Global, 2009)

    Google Scholar 

  46. L. Demaret, F. Friedrich, H. Führ, T. Szygowski, Multiscale wedgelet denoising algorithms. Proc. SPIE 5914(XI-12) (2005)

    Google Scholar 

  47. M. DeNies, Survey of Image Denoising Algorithms and Noise Estimation (2012) Denies Video Software: http://www.deniesvideo.com/whitepapers.htm

  48. P. Derian, P. Heas, C. Herzet, E. Memin, Wavelet-based fluid motion estimation, in Proceedings of the 3rd International Conference Scale Space and Variational Methods in Computer Vision, pp. 737–748 (2011)

    Google Scholar 

  49. P. Derian, P. Heas, E. Memin, Wavelets to reconstruct turbulence multifractals from experimental image sequences, in Proceedings of the 7th International Symposium on Turbulence and Shear Flow Phenomena (TSFP), pp. 1–6 (2011)

    Google Scholar 

  50. M. Deshmukh, U. Bhosle, A survey of image registration. Intl. J. Image Process. 5(3), 245–269 (2011)

    Google Scholar 

  51. A.K. Dey, An analysis of seismic wavelet estimation. Master’s thesis, University of Calgary (1999)

    Google Scholar 

  52. J.R. Ding, J.F. Yang, A simplified SPIHT algorithm. J. Chin. Inst. Eng. 31(4), 715–719 (2008)

    Article  Google Scholar 

  53. M.N. Do, Directional Multiresolution Image Representation. Ph.D. thesis, Department of Communication Systems, Swiss Federal Institute of Technology Lausanne (2001)

    Google Scholar 

  54. M.N. Do, M. Vetterli, The finite ridgelet transform for image representation. IEEE Trans. Image Process. 12(1), 16–28 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  55. M.N. Do, M. Vetterli, The contourlet transform: An efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)

    Article  MathSciNet  Google Scholar 

  56. D.L. Donoho, Wedgelets: Nearly-minimax estimation of edges. Ann. Stat. 27, 859–897 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  57. D. L. Donoho. Orthonormal ridgelets and linear singularities. SIAM J. Math. Anal., 31(5):1062–1099, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  58. D.L. Donoho, Applications of beamlets to detection and extraction of lines, curves and objects in very noisy images, in Proceedings IEEE-EURASIP Biennial Intl. Wkshp. Nonlinear Signal and Image Processing 2001 (2001)

    Google Scholar 

  59. D. L. Donoho and M. R. Duncan. Digital curvelet transform: Strategy, implementation and experiments. In Proc. SPIE, volume 4056, pages 12–29, 2000.

    Article  Google Scholar 

  60. D.L. Donoho, A.G. Flesia, Digital ridgelet transform based on true ridge functions. Stud. Comput. Math. 10, 1–30 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  61. D.L. Donoho, X. Huo, Beamlets and multiscale image analysis, in Multiscale and Multiresolution Methods, Lecture Notes in Computational Science and Engineering, vol. 20 (LNCSE Springer 2001)

    Google Scholar 

  62. D.L. Donoho, M. Vetterli, R.A. DeVore, I. Daubechies, Data compression and harmonic analysis. IEEE T. Inf. Theory 44(6), 2435–2476 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  63. H. Douma, M.V. deHoop, Leading-order seismic imaging using curvelets. Geophysiscs, 72(6), 231–248 (2007)

    Google Scholar 

  64. G. Easley, D. Labate, W. Lim, Optimally sparse image representations using shearlets, in 40th Asilomar Conference on Signals, Systems and Computers, pp. 974–978 (2006). Monterey

    Google Scholar 

  65. G.R. Easley, D. Labate, F. Colonna, Shearlet-based total variation diffusion for denoising. IEEE T. Image Process. 18(2), 260–268 (2009)

    Article  MathSciNet  Google Scholar 

  66. G.R. Easley, D. Labate, V.M. Patel, Hyperbolic shearlets, in Proceedings of the IEEE International Conference Image Processing (2012)

    Google Scholar 

  67. O. Egger, P. Fleury, T. Ebrahimi, M. Kunt, High-performance compression of visual information –a tutorial review- part I: Still pictures. Proc. IEEE 87(6), 976–1011 (1999)

    Google Scholar 

  68. B. Ergen, Signal and image denoising using wavelet transform, in Advances in Wavelet Theory and Their Applications in Engineering, Physics and Technology, de.by D. Baleanu (InTech Europe, 2012. Chap. 21)

    Google Scholar 

  69. R. Eslami, H. Radha, Translation-invariant contourlet transform and its application to image denoising. IEEE Trans. Image Process. 15(11), 3362–3374 (2006)

    Article  Google Scholar 

  70. M.J. Fadili, J.L. Starck, Curvelets and ridgelets, in Encyclopedia of Complexity and Systems Science, vol. 3 (Springer, 2007), pp. 1718–1738

    Google Scholar 

  71. F.C.A. Fernandes, R.L.C. van Spaendonck, C.S. Burrus, A new framework for complex wavelet transforms. IEEE Trans. Sign. Process. 51(7), 1825–1837 (2003)

    Article  MathSciNet  Google Scholar 

  72. B. Fisher, J. Modersitzki, Ill posed medicine—an introduction to image registration. Inverse Prob. 24, 1–19 (2008)

    MathSciNet  MATH  Google Scholar 

  73. A.G. Flesia, H. Hel-Or, A. Averbuch, E.J. Candès, R.R. Coifman, D.L. Donoho, Digital implementation of ridgelet packets, in Beyond Wavelets, ed. by G. Welland (Academic Press, 2003)

    Google Scholar 

  74. J.E. Fowler, Embedded wavelet-based image compression: State of the art. Inf. Technol. 45(5), 256–262 (2003)

    Google Scholar 

  75. W.T. Freeman, E.H. Adelson, The design and use of steerable filters. IEEE T. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)

    Google Scholar 

  76. R.L.G. Claypoole, R.G. Baraniuk, A multiresolution wedgelet transform for image processing, in Wavelet Applications in Signal and Image Processing VIII ed. by M.A. Unser, A. Aldroubi, A.F. Laine, vol. 4119 (Proc. SPIE, 2000), pp. 253–262

    Google Scholar 

  77. B. Goossens, J. Aelterman, H. Luong, A. Pizurica, W. Philips, Efficient design of a low redundant discrete shearlet transform, in Proceedings of the IEEE International Workshop Local and Non-local Approximation in Image Processing, pp. 112–124 (2009)

    Google Scholar 

  78. R.A. Gopinath, The phaselet transform-an integral redundancy nearly shift-invariant wavelet transform. IEEE T. Sign. Process. 51(7), 1792–1805 (2003)

    Article  MathSciNet  Google Scholar 

  79. R.A. Gopinath, Phaselets of framelets. IEEE T. Sign. Process. 53(5), 1794–1806 (2005)

    Article  MathSciNet  Google Scholar 

  80. A. A. Goshtasby. Image Registration: Principles, Tools and Methods. Springer, 2012.

    Book  MATH  Google Scholar 

  81. G.C. Green, Wavelet-based denoising of cardiac PET data. Master’s thesis, Carleton University, Canada (2005)

    Google Scholar 

  82. S. Grgic, M. Grgic, B. Zovko-Cthlar, Performance analysis of image compression using wavelets. IEEE T. Ind. Electron. 48(3), 682–695 (2001)

    Article  Google Scholar 

  83. J. A. Guerrero-Colon and J. Portilla. Two-level adaptive denoising using Gaussian scale mixtures in overcomplete oriented pyramids. In Proc. IEEE ICIP, volume 1, pages 105–108, 2005.

    Google Scholar 

  84. K. Guo, G. Kutyniok, D. Labate, Sparse multidimensional representations using anisotropic dilation and shear operators, in Proceedings of the International Conference on the Interactions between Wavelets and Splines, pp. 189–201 (2005)

    Google Scholar 

  85. D.K. Hammond, E.P. Simoncelly, Image denoising with an orientation-adaptive Gaussian scale mixture model, in Proceedings of the IEEE International Conference Image Processing, pp 1433–1436 (2006)

    Google Scholar 

  86. S. Häuser, Fast Finite Shearlet Transform: A Tutorial (University of Kaiserslautern, 2011). arXiv:1202.1773

  87. D.J. Heeger, Notes on Steerable Filters. New York University, Notes on Motion Estimation, www.cns.nyu.edu, Psych 267/CS 348D/EE365, 1998. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.9897&rep=rep1&type=pdf

  88. M. Hensel, T. Pralow, R.R. Grigat, Real-time denoising of medical X-ray image sequences: Three entirely different approaches, in Proceedings of the ICIAR, pp. 479–490 (2006)

    Google Scholar 

  89. F.J. Hermann, G. Hennenfent, Non-parametric seismic data recovery with curvelet frames. Geophys. J. 173, 233–248 (2008)

    Article  Google Scholar 

  90. P.S. Hiremath, P.T. Akkasaligar, S. Badiger, Speckle reducing contourlet transform for medical ultrasound images. World Acad. Sci Eng. Technol. 56, 1217–1224 (2011)

    Google Scholar 

  91. A. Islam, W.A. Pearlman, An embedded and efficient low-complexity hierarchical image coder. Proc. SPIE 3653 (1999)

    Google Scholar 

  92. M. Jacob, M. Unser, Design of steerable filters for feature detection using Canny-like criteria. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 1007–1019 (2004)

    Google Scholar 

  93. A. Kiely, M. Klimesh, The ICER progressive wavelet image compressor. Technical report, JPL NASA, 2003. IPN Progress Report1-46

    Google Scholar 

  94. H.S. Kim, H.W. Park, Wavelet-based moving-picture coding using shift-invariant motion estimation in wavelet domain. Sign. Process. Image Commun. 16, 669–679 (2001)

    Article  Google Scholar 

  95. N.G. Kingsbury, Complex wavelets for shift invariant analysis and filtering of signals. J. Appl. Comput. Harmonic Anal. 10(3), 234–253 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  96. P. Korfiatis, S. Skiadopoulos, P. Sakellaropoulos, C. Kalogeropoulou, L. Costaridou, Combining 2D wavelet edge highlighting and 3D thresholding for lung segmentation in thin-slice CT. Br. J. Radiol. 80, 996–1005 (2007)

    Article  Google Scholar 

  97. J. Krommweh, Tetrolet transform: A new adaptive Haar wavelet algorithm for sparse image representation. J. Vis. Commun. Image Represent. 21, 364–374 (2010)

    Article  Google Scholar 

  98. J. Krommweh, G. Plonka, Directioal haar wavelet frames on triangles. Appl. Comput. Harmonic Anal. 27, 215–234 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  99. V. Kumar, J. Oueity, R. M. Clowes, and F. Hermann. Enhancing crustal reflection data through curvelet denoising. Tectonophysics, 508:106–116, 2011.

    Article  Google Scholar 

  100. G. Kutyniok, Clustered sparsity and separation of cartoon and texture. SIAM J. Imaging Sci. 6(2), 848–874 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  101. G. Kutyniok, D. Labate, Shearlets: The first five years. Technical report, Oberwolfachn. 44/. (2010)

    Google Scholar 

  102. G. Kutyniok, M. Sharam, X. Zhuang, Shearlab: A rational design of a digital parabolic scaling algorithm. SIAM J. Imaging Sci. 5(4), 1291–1332 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  103. D. Labate, W. Lim, G. Kutyniok, G. Weiss, Sparse multidimensional representations using shearlets. Proc. SPIE Wavelets XI, 254–262 (2005)

    Google Scholar 

  104. D. Labate, P. Negi, 3d discrete shearlet transform and video denoising. Proc. SPIE 8138 (2011)

    Google Scholar 

  105. A.F. Laine, Wavelets in temporal and spatial processing of biomedical images. Ann. Rev. Biomed. Eng. 2, 511–550 (2000)

    Article  Google Scholar 

  106. M. Lebrun, M. Colom, A. Buades, J.M. Morel, Secrets of image denoising cuisine. Acta Numer. 21, 475–576 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  107. Q. Li, J. Shen, Report on Implementing Fast Discrete Curvelet Transform (Florida State University, Department Scientific Computing, 2007). http://people.sc.fsu.edu/~ql05/report_files/Report_FDCT_Wrapping.pdf

  108. Z. Li, New Methods for Motion Estimation with Applications to Low Complexity Video Compression. Ph.D. thesis, Purdue University (2005)

    Google Scholar 

  109. W.Q. Lim, The discrete shearlet transform: A new directional transform and compactly supported shearlet frames. IEEE Trans. Image Process. 19, 1166–1180 (2010)

    Article  MathSciNet  Google Scholar 

  110. A. Lisowska. Second order wedgelets in image coding. In Proc. IEEE EUROCON 2007, pages 237–244, 2007.

    Google Scholar 

  111. J. Liu, G. Liu, Y. Wang, W. He, A watermarking algorithm based on direction of image specific edge, in Proceedings of the IEEE 3rd International Congress on Image and Signal Processing, pp 1146–1150 (2010)

    Google Scholar 

  112. W. Liu, E. Ribeiro, A survey on image-based continuum-body motion estimation. Image Vision Comput. 29, 509–523 (2011)

    Article  Google Scholar 

  113. Y. Liu, K.N. Ngan, Fast multiresolution motion estimation algorithms for wavelet-based scalable video coding. Sign. Process. Image Commun. 22, 448–465 (2007)

    Article  Google Scholar 

  114. O.G. Lockwood, H. Kanamori, Wavelet analysis of the seismograms of the 2004 Sumatra-Andaman earthquake and its application to tsunami early warning. Geochem. Geophys. Geosyst. 7(9), 1–10 (2006)

    Article  Google Scholar 

  115. Y. Lu, M.N. Do, CRISP-contourlets: A critically-sampled directional multiresultion image representation, in Proceedings of the of SPIE Conference on Wavelet Applications in Signal and Image Processing X (San Diego 2003), pp. 655–665

    Google Scholar 

  116. Y. Lu, M.N. Do, Multidimensional directional filter banks and surfacelets. IEEE Trans. Image Process. 16(4), 918–931 (2007)

    Article  MathSciNet  Google Scholar 

  117. F. Luisier, The SURE-LET Approach to Image Denoising. Ph.D. thesis, Ecole Polytechnique Fédrale de Lausanne (2010)

    Google Scholar 

  118. F. Luisier, T. Blu, B. Forster, M. Unser, Which wavelet bases are the best for image denoising? in Proceedings of the SPIE Conference Mathematical Imaging, vol. 5914, pp. 59140E–1 to 59140E–12 (2005)

    Google Scholar 

  119. J. Ma, A. Antoniadis, F.X. Le Dimet, Curvelet-based snake for multiscale detection and tracking of geophysical fluids. IEEE T. Geosci. Remote Sens. 44(12), 3626–3638 (2006)

    Article  Google Scholar 

  120. J. Ma, G. Plonka, The curvelet transform. IEEE Sign. Process. Mgz 27(2), 118–133 (2010)

    Article  Google Scholar 

  121. P.M. Mahajan, S.R. Kolhe, P.M. Patil, A review of automatic fabric defect detection techniques. Adv. Comput. Res. 1(2), 18–29 (2009)

    Google Scholar 

  122. J.B.A. Maintz, M.A. Viergever, A survey of medical image registration. Med. Image Anal. 2(1), 1–36 (1998)

    Article  Google Scholar 

  123. A. Mammeri, B. Hadjou, A. Khoumsi, A survey of image compression algoritms for visual sensor networks. ISRN Sens. Netwo. ID 760320, 1–19 (2012)

    Article  Google Scholar 

  124. O. Marques, Practical Image and Video Processing Using MATLAB (J. Wiley, 2011)

    Google Scholar 

  125. B. Matalon, M. Elad, M. Zibulevsky, Improved denoising of images using modeling of a redundant contourlet transform. Proc. SPIE 5914, 617–628 (2005)

    Google Scholar 

  126. P. May. Wavelet analysis of blood flow singularities by using ultrasound data. Technical report, Stanford University, 2002. Center for Turbulence Research Annual Research Briefs 2002.

    Google Scholar 

  127. G. Menegaz, Trends in medical image compression. Curr. Med. Imaging Rev. 2(2), 1–20 (2006)

    Article  Google Scholar 

  128. F.G. Meyer, R.R. Coifman, Brushlets: a tool for directional image analysis and image compression. Appl. Comput. Harmonic Anal. 4(2), 147–187 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  129. M. C. Motwani, M. C. Gadiya, R. C. Motwani, and F. C. Jr. Harris. Survey of image denoising techniques. In Proc. GSPx, 2004.

    Google Scholar 

  130. A. Nait-Ali, C. Cavaro-Menard, Compression of Biomedical Images and Signals (John Wiley, 2008)

    Google Scholar 

  131. H. Nazeran, Wavelet-based segmentation and feature extraction of heart sounds for intelligent PDA-based phonocardiography. Methods Inf. Med. 46, 1–7 (2007)

    Google Scholar 

  132. P.S. Negi, D. Labate, 3D discrete shearlet transform and video processing. IEEE Trans. Image Process. 21(6), 2944–2954 (2012)

    Article  MathSciNet  Google Scholar 

  133. H.T. Nguyen, N. Linh-Trung, The Laplacian pyramid with rational scaling factors and application on image denoising, in Proceedings of the International Confernce Information Science, Signal Processing and their Applications (2010), pp. 468–471

    Google Scholar 

  134. T.T. Nguyen, H. Chauris, Uniform discrete curvelet transform. IEEE Trans. Signal Process. 58(7), 3618–3634 (2010)

    Article  MathSciNet  Google Scholar 

  135. T. T. Nguyen, Y. Liu, H. Chauris, S. Oraintara, Implementational aspects of the contourlet filter bank and application in image coding. EURASIP J. Adv. Signal Process., 2008(ID 373487), 1–18 (2008)

    Google Scholar 

  136. T.T. Nguyen, S. Oraintara, A directional decomposition: Theory, design, and implementation, in Proceedings of the IEEE Intrnational Symposium Circuits and Systems (ISCAS), vol. 3, pp. 281–284 (2004)

    Google Scholar 

  137. S. Palakkai, K.M.M. Prabhu, Poisson image denoising using fast discrete curvelet transform and wave atom. Signal Process. 92(9), 2002–2017 (2012)

    Article  Google Scholar 

  138. C. Paulson, E. Soundararajan, D. Wu, Wavelet-based image registration. Proc. SPIE 7704 (2010)

    Google Scholar 

  139. W.A. Pearlman, B.J. Kim, Z. Xiong, Embedded video subband coding with 3D SPIHT, in Wavelet Image and Video Compression ed. by P.N. Topiwala (Springer, 2002), pp. 397–432

    Google Scholar 

  140. H. Peinsipp, Implementation of a Java Applet for Demonstration of Block-matching Motion-estimation Algorithms (Technical report, Mannheim University, Dep. Informatik, 2003)

    Google Scholar 

  141. Z.K. Peng, F.L. Chu, Application of the wavelet transform in machine condition monitoring and fault diagnostics: A review with bibliography. Mech. Syst. Signal Process. 18(2), 199–221 (2004)

    Article  Google Scholar 

  142. P. Perona, Steerable-scalable kernels for edge detection and junction analysis. Image Vision Comput. 10(10), 663–672 (1992)

    Article  Google Scholar 

  143. G. Peyré, S. Mallat, Discrete bandelets with geometric orthogonal filters, in Proceedings of the IEEE International Conference Image Processing, vol. 1 (ICIP I- 2005), pp. 65–68

    Google Scholar 

  144. G. Peyré, S. Mallat, A Matlab Tour of Second Generation Bandelets (2005). www.cmap.polytechnique.fr/~peyre/BandeletsTutorial.pdf

  145. G. Peyré, S. Mallat, Surface compression with geometric bandelets. Proc. ACM SIGGRAPH’05 601–608 (2005)

    Google Scholar 

  146. P. Pongpiyapaiboon, Development of efficient algorithm for geometrical representation based on arclet decomposition. Master’s thesis, Technische Universität Munich (2005)

    Google Scholar 

  147. J. Portilla, V. Strela, J. Wainwright, E.P. Simoncelli, Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE T. Image Process. 12(11), 1338–1351 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  148. H. Rabbani, Image denoising in steerable pyramid domain based on a local Laplace prior. Pattern Recogn. 42, 2181–2193 (2009)

    Article  MATH  Google Scholar 

  149. S.M.M. Rahman, K. Hasan, Md. Wavelet-domain iterative center weighted median filter for image denoising. Signal Process. 83, 1001–1012 (2003)

    Article  MATH  Google Scholar 

  150. U. Rajashekar, E.P. Simoncelli, Multiscale denoising of photographic images, in The Essential Guide to Image Processing ed. by A. Bovik (Chapter 11. Academic Press, 2009)

    Google Scholar 

  151. M. Rantala, S. Vänskä, S. Järvenpää, M. Kalke, M. Lassas, J. Moberg, S. Siltanen, Wavelet-based reconstruction for limited-angle X-ray tomography. IEEE T. Med. Imaging 25(2), 210–217 (2006)

    Article  Google Scholar 

  152. J.K. Romberg, M. Wakin, R. Baraniuk, Multiscale wedgelet image analysis: Fast decomposition and modeling. Proc. IEEE Int. Conf. Image Process. 3, 585–588 (2002)

    Article  Google Scholar 

  153. R. Rubinstein, A.M. Bruckstein, M. Elad, Dictionaries for sparse representation modeling. Proc. IEEE 98(6), 1045–1057 (2010)

    Article  Google Scholar 

  154. S.D. Ruikar, D.D. Doye, Wavelet based image denoising technique. Int. J. Adv. Comput. Sci. Appl. 2(3), 49–53 (2011)

    Google Scholar 

  155. M.N. Safran, M. Freiman, M. Werman, L. Joskowicz, Curvelet-based sampling for accurate and efficient multimodal image registration. Proc. SPIE 7259 (2009)

    Google Scholar 

  156. A. Said, W.A. Pearlman, Image compression using the spatial-orientation tree, in Proceedings of the IEEE International Symposium Circuits and Systems, pp. 279–282 (1993)

    Google Scholar 

  157. A. Said, W. A. Pearlman, A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circ. Syst. Video Technol. 6(3), 243–250 (1996)

    Google Scholar 

  158. D. Salomon, Handbook of Data Compression (Springer, 2009)

    Google Scholar 

  159. R.K. Sarawale, S.R. Chougule, Survey of image denoising methods using dual-tree complex DWT and double-density complex DWT. Intl. J. Advanced Research in Computer. Eng. Technol. 1(10), 121–126 (2012)

    Google Scholar 

  160. D. Saupe, R. Hamzaoui, A review of the fractal image compression literature. Comput. Graph. 28(4), 268–276 (1994)

    Article  Google Scholar 

  161. K. Sayood, Introduction to Data Compression (Morgan Kaufmann, 2012)

    Google Scholar 

  162. A. Schmitt, B. Wessel, A. Roth, Curvelet approach for SAR image denoising, structure enhancement, and change detection. Int. Arch. Photogrammetry 38(part 3/W4), 151–156 (2009)

    Google Scholar 

  163. E. Seeram. Irreversible compression in digital radiology. a literature review. Radiography, 12(1):45–59, 2006.

    Article  Google Scholar 

  164. I.W. Selesnick, R.G. Baraniuk, N.G. Kingsbury, The dual-tree complex wavelet transform. IEEE Signal Processing Magazine, pp. 123–151 (2005)

    Google Scholar 

  165. R. Sethunadh, T. Thomas, Image denoising using SURE-based adaptive thresholding in directionlet domain. Signal Image Process. (SIPIJ) 3(6), 61–73 (2012)

    Google Scholar 

  166. J.M. Shapiro, Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Signal Process. 41(12), 3445–3462 (1993)

    Article  MATH  Google Scholar 

  167. P.D. Shukla, Complex wavelet transforms and their applications. Master’s thesis, University of Strathclyde (2003)

    Google Scholar 

  168. R. Simn and R. White. Phase, polarity and the interpreter’s wavelet. First Break, 20:277–281, 2002.

    Google Scholar 

  169. E.P. Simoncelli, E.H. Adelson, Subband Transforms (Kluwer Academic Publishers, 1990)

    Google Scholar 

  170. E.P. Simoncelli, H. Farid, Steerable wedge filters for local orientation analysis. IEEE Trans. Image Process. 5(9), 1377–1382 (1996)

    Article  Google Scholar 

  171. E.P. Simoncelli, W.T. Freeman, The steerable pyramid: A flexible architecture for multi-scale derivative computation. Proc. IEEE Int. Conf. Image Process. 3, 444–447 (1995)

    Google Scholar 

  172. E.P. Simoncelli, W.T. Freeman, E.H. Adelson, D.J. Heeger, Shiftable multiscale transforms. IEEE Trans. Inf. Theory 38(2), 587–607 (1992)

    Article  MathSciNet  Google Scholar 

  173. M.K. Singh, Denoising of natural images using the wavelet transform. Master’s thesis, San José State University (2010)

    Google Scholar 

  174. V. Singh, Recent patents o image compression—a survey. Recent Pat. Sign. Process. 2, 47–62 (2010)

    Article  Google Scholar 

  175. A.N. Skodras, C.A. Christopoulos, T. Ebrahimi, JPEG2000: The upcoming still image compression standard. Pattern Recogn. Lett. 22(12), 1337–1345 (2001)

    Article  MATH  Google Scholar 

  176. M.S. Song, Wavelet image compression. Contemp. Math. 1–33 (2006)

    Google Scholar 

  177. A. Sotiras, C. Davatazikos, N. Paragios, Deformable Medical Image Registration; A Survey (INRIA Research, Technical report, 2012)

    Google Scholar 

  178. N. Sprljan, S. Grgic, and M. Grgic. Modified SPIHT algorithm for wavelet packet image coding. Real-Time Imaging, 11(5–6):378–388, 2005.

    Article  Google Scholar 

  179. J.L. Starck, E. Candès, D. Donoho, The curvelet transform for image denoising. IEEE Trans. Image Process. 11(6), 670–684 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  180. J.L. Starck, D. Donoho, E. Candès, Astronomical image representation by the curvelet transform. Astron. and Astrophys. 398, 785–800 (2003)

    Article  Google Scholar 

  181. M.G. Strintzis, A review of compression methods for medical images in PACS. Int. J. Med. Inf. 52, 159–165 (1998)

    Article  Google Scholar 

  182. R. Sudhakar, Ms. R. Karthiga, S. Jayaraman, Image compression using coding and wavelet coefficients—a survey. ICGST-GVIP J. 5(6), 25–38 (2005)

    Google Scholar 

  183. P.D. Swami, A. Jain, Segmentation based combined wavelet-curvelet approach for image denoising. Int. J. Inf. Eng. 2(1), 32–37 (2012)

    Google Scholar 

  184. R. Szeliski, Computer Vision: Algorithms and Applications (Springer, 2010)

    Google Scholar 

  185. G. Tang, J. Ma, Application of total-variation-based curvelet shrinkage for three-dimensional seismic data denoising. IEEE Geosci. Remote Sens. Lett. 8(1), 103–107 (2011)

    Article  Google Scholar 

  186. C. Taswell, The what, how, and why of wavelet shrinkage denoising. Comput. Sci. Eng. 2(3), 12–19 (2000)

    Article  Google Scholar 

  187. D. Taubman, High performance scalable image compression with EBCOT. IEEE T. Image Process. 9(7), 1158–1170 (2000)

    Article  Google Scholar 

  188. N. Tekbiyik, H.S. Tozkoparan, Embedded zerotree wavelet compression. Technical report, Eastern Maditerranean University, 2005. B.S. Project

    Google Scholar 

  189. P.C. Teo, Y. Hel-Or, Lie generators for computing steerable functions. Pattern Recognit. Lett. 19, 7–17 (1998)

    Article  MATH  Google Scholar 

  190. L. Tessens, A. Pizurica, A. Alecu, A. Munteanu, W. Philips, Context adaptive image denoising through modeling of curvelet domain coefficients. J. Electron. Imaging 17(3), 033021–1 to 033021–17 (2008)

    Google Scholar 

  191. J. P. Thiran. Recursive digital filters with maximally flat group delay. IEEE T. Circuit Theory, 18(6):659–664, 1971.

    Article  MathSciNet  Google Scholar 

  192. A.S. Tolba, Wavelet packet compression of medical images. Digital Sign. Process. 12(4), 441–470 (2002)

    Article  Google Scholar 

  193. F. Truchetet, O. Laligant, A review on industrial applications of wavelet and multiresolution based signal-image processing. J. Electron. Imaging 17(3), 1–11 (2008)

    Article  Google Scholar 

  194. F.E. Turkheimer, M. Brett, D. Visvikis, V.J. Cunningham, Multiresolution analysis of emission tomography images in the wavelet domain. J. Cereb. Blood Flow Metab. 19, 189–208 (1999)

    Google Scholar 

  195. M. Unser, A. Aldroubi, A review of wavelets in biomedical applications. Proc. IEEE 84(4), 626–638 (1996)

    Article  Google Scholar 

  196. M. Unser, N. Chenouard, A unifying parametric framework for 2D steerable wavelet transforms. SIAM J. Imaging Sci. 6(1), 102–135 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  197. B.E. Usevitch, A tutorial on modern lossy wavelet image compression: Foundations of JPEG 2000. IEEE Signal Processing Mgz., pp. 22–35 (2001)

    Google Scholar 

  198. C. Valens, Embedded Zerotree Wavelet Encoding. http://www.mindless.com, 1999. http://140.129.20.249/~jmchen/wavelets/Tutorials/c.valens/ezwe.pdf

  199. J.C. van den Berg, Wavelets in Physics (Cambridge University Press, 2004)

    Google Scholar 

  200. M. van Ginkel, Image Analysis Using Orientation Space Based on Steerable Filters. PhD thesis, TU Delft (2002)

    Google Scholar 

  201. R.L.C. van Spaendonck, Seismic Applications of Complex Wavelet Transforms. Ph.D. thesis, TU Delft (2003)

    Google Scholar 

  202. V. Velisavljevic, B. Beferull-Lozano, M. Vetterli, P.L. Dragotti, Directionlets: Anisotropc multi-directional representation with separable filtering. IEEE Trans. Image Process. 15(7), 1916–1933 (2006)

    Article  Google Scholar 

  203. M. Vetterli, Wavelets, approximation and compression. IEEE Signal Processing Mgz., pp 59–73 (2001)

    Google Scholar 

  204. A.P.N. Vo, Complex Directional Wavelet Transforms: Representation, Statistical Modeling and Applications. Ph.D. thesis, The University of Texas at Arlington (2008)

    Google Scholar 

  205. M. Wahed, GhS El-tawel, A.G. El-karim, Automatic image registration technique of remote sensing images. Int. J. Adv. Comput. Sci. Appl. 4(2), 177–187 (2013)

    Google Scholar 

  206. J.S. Walker, Wavelet-based image compression, in Transforms and Data Compression Handbook, ed. by Yip Rao (CRC Press, 2000)

    Google Scholar 

  207. R.H. Wiggins III, H.R. Davidson, C. Harnsberger, J.R. Lauman, P.A. Goede, Image file formats: Past, present, and future. Radio Graph. 21(3), 789–798 (2001)

    Google Scholar 

  208. R.M. Willett, R.D. Nowak, Platelets: a multiscale approach for recovering edges and surfaces in photon-limited medical imaging. IEEE Trans. Med. Imaging 22(3), 332–350 (2003)

    Article  Google Scholar 

  209. A. Woiselle, J.L. Starck, J. Fadili, 3D curvelet transforms and astronomical data restoration. Appl. Comput. Harmonic Anal. 28(2), 171–188 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  210. A. Woiselle, J.L. Starck, J. Fadili, 3-D denoising and inpainting with the low-redundancy fast curvelet transform. J. Math. Imaging Vision 39, 121–139 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  211. S.T.C. Wong, L. Zaremba, D. Gooden, H.K. Huang, Radiologic image compression—a review. Proc. IEEE 83(2), 194–219 (1995)

    Article  Google Scholar 

  212. Q. Wu, M.A. Schulze, K.R. Castleman, Steerable pyramid filters for selective image enhancement applications, in Proceedings of the IEEE International Symposium Circuits and Systems, vol. 5, pp. 325–328 (1998)

    Google Scholar 

  213. Y.T. Wu, T. Kanade, C.C. Li, J. Cohn, Image registration using wavelet-based motion model. Int. J. Comput. Vision 38(2), 129–152 (2000)

    Article  MATH  Google Scholar 

  214. J. Xu, D. Wu, Ripplet transform type II transform for feature extraction. IET Image Process. 6(4), 374–385 (2012)

    Article  MathSciNet  Google Scholar 

  215. J. Xu, L. Wu, Yang, D. Wu, Ripplet: A new transform for image processing. J. Vis. Commun. Image Represent. 21, 627–639 (2010)

    Google Scholar 

  216. Y. Hel-Or, D. Shaked, A discriminative approach for wavelet denoising. IEEE Trans. Image Process. 17(4), 443–457 (2008)

    Article  MathSciNet  Google Scholar 

  217. P. Yang, J. Gao, W. Chen, Curvelet-based POCS interpolation of nonuniformly sampled seismic records. J. Appl. Geophys. 79, 90–99 (2012)

    Article  Google Scholar 

  218. S. Yi, D. Labate, G.R. Easley, H. Krim, A shearlet approach to edge analysis and detection. IEEE T. Image Process. 18(5), 929–941 (2009)

    Article  MathSciNet  Google Scholar 

  219. W. Yu, K. Daniilidis, G. Sommer, Approximate orientation steerability based on angular Gaussian. IEEE Trans. Image Process. 18(2), 193–205 (2001)

    MATH  Google Scholar 

  220. J. Zan, M.O. Ahmad, M.N.S. Swamy, Comparison of wavelets for multiresolution motion estimation. IEEE T. Circ. Syst. Video Technol. 16(3), 439–446 (2006)

    Google Scholar 

  221. H. Zhang, C. Thurber, C. Rowe, Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings. Bull. Seismol. Soc. Am. 93(5), 1904–1912 (2003)

    Article  Google Scholar 

  222. W. Zhang. Several kinds of modified SPIHT codec, in Discrete Wavelet Transforms- Algorithms and Applications, ed. by H. Olkkonsen (Intech, 2011)

    Google Scholar 

  223. B. Zitova, J. Flusser, Image registration methods: A survey. Image Vis. Comput. 21, 977–1000 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Maria Giron-Sierra .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Giron-Sierra, J.M. (2017). Wavelet Variants for 2D Analysis. In: Digital Signal Processing with Matlab Examples, Volume 2. Signals and Communication Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2537-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2537-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2536-5

  • Online ISBN: 978-981-10-2537-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics