Field Evaluation

  • K. Sahayaraj
  • R. Balasubramanian


A total of five pests such as Aphis craccivora, Helicoverpa armigera, Spodoptera litura, Mylabris indica, and grasshoppers were recorded both in summer and kharif. However, these pest populations were drastically decreased after introduction of oligidic diet-reared predator. Among all predators recorded, Rhynocoris marginatus was the most abundant in the groundnut field. From this result, it was very clear that Rhynocoris marginatus greatly suppressed the population of Spodoptera litura, Aphis craccivora, Helicoverpa armigera, and Pericallia ricini. In summer Rhynocoris fuscipes, spiders, dragonfly, Mantisreligiosa, and Coccinella septempunctata were established. Among the two-diet regime, OD-reared Rhynocoris marginatus slightly and highly reduce the pest populations.

Production of the groundnut was high in the artificial diet-reared predator. Similarly the cost-benefit ratio was maximum in the field-released OD predator (1:2) followed by T1 (CC)-reared predator (1:1.8). Among the treatments, number of two pods was more than three pods in a groundnut plant. During summer, groundnut production was maximum in the oligidic diet-reared predator plot (1224 kg/h) followed by T1 (936.00 kg/h) and minimum in the control plot (728.00 kg/h). Same trend was also observed in kharif. During kharif, the percent avoidable loss (PAL) was maximum (23.33 %) in field-released OD-reared predator, followed by T1-reared predator released (14.81 %).


Integrated pest management Zelus Coranus Rhynocoris Pristhesancus Economically imporant crop Cost-benefit ratio 


  1. Ables JR (1978) Feeding behavior of an assassin bug, Zelus renardii. Ann Entomol Soc Am 71(4):476–478CrossRefGoogle Scholar
  2. Ambrose DP (1996) Assassin bugs (Insecta: Heteroptera: Reduviidae) in biocontrol: success and strategies, a review. In: Ambrose DP (ed) Biological and cultural control of insect pests an Indian scenario. Adeline Publishers, Tirunelveli, pp 262–284, pp–362Google Scholar
  3. Ambrose DP (1999) Assassin bugs. Science Publishers, EnfieldGoogle Scholar
  4. Ambrose DP, Claver MA (1999) b. Suppression of cotton leaf worm Spodoptera litura, flower beetle Mylabris pustulata and red cotton bug Dysdercus cingulatus by Rhynocoris marginatus (Fabr.) (Heteroptera: Reduviidae) in cotton field cages. J Appl Entomol 123:225–229CrossRefGoogle Scholar
  5. Amin PW (1983) Major field and storage insect pests of groundnut in India and their control. Occasional paper 1/83, Groundnut improvement programme. ICRISAT, PatancheruGoogle Scholar
  6. Antony M, Daniel J, Kurian C, Pillai GB (1979) Attempts in introduction and colonization of the exotic reduviid predator Platymeris laevicollis Distant for the biological suppression of the coconut rhinocerous beetle, Oryctes rhinoceros. Proc Plant Crops Symp 2:445–454Google Scholar
  7. Aquilino KM, Cardinale BJ, Ives AR (2005) Reciprocal effects of host plant and natural enemy diversity on herbivore suppression: an empirical study of a model tritrophic system. Oikos 108:275–282CrossRefGoogle Scholar
  8. Barbosa PA (ed) (1998) Conservation biological control. Academic Press, San DiegoGoogle Scholar
  9. Bengtsson J, Ahnstrom J, Weibull AC (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol 42:261–269CrossRefGoogle Scholar
  10. Biswas GC, Begum S, Mian MY (2000) Leaf infestation and yield loss caused by jassid and thrips in groundnut. J Asiat Soc Bangladesh Sci 26(2):253–258Google Scholar
  11. Blatchley WS (1926) Heteroptera, or true bugs of eastern North America; with special reference to the faunas of Indiana and Florida. Nature Publishing Company, IndianapolisGoogle Scholar
  12. Byrnes J, Stachowicz JJ, Hultgren KM, Hughes AR, Olyarnik SV, Thornbert CS (2005) Predator diversity strengthens trophic cascades in kelp forests by modifying herbivore behaviour. Ecol Lett 9:61–71Google Scholar
  13. Cardinale BJ, Harvey CT, Gross K, Ives AR (2003) Biodiversity and biocontrol: emergent impacts of a multiple-enemy assemblage on pest suppression and crop yield in an agroecosystem. Ecol Lett 6:857–865CrossRefGoogle Scholar
  14. Carpenter JE, Greany PD (1998) Comparative development and performance of artificially reared versus host-reared Diapetimorpha introita (Cresson) (Hymenoptera: Ichneumonidae) wasps. Biol Control 12:137–142CrossRefGoogle Scholar
  15. Castane C, Zapata R (2005) Rearing the predatory bug Macrolophus caliginosus on a meat-based diet. Biol Control 34:66–72CrossRefGoogle Scholar
  16. Castane C, Iriarte J, Lucas E (2002) Comparison of prey consumption by Dicyphus tamaninii reared conventionally and on a meat based diet. BioControl 47:657–666CrossRefGoogle Scholar
  17. Chocorosqui VR, De Clercq P (1999) Developmental and predatory performance of Podisus maculiventris (Say) (Heteroptera: Pentatomidae) reared on a meat-based artificial diet. Meded Faculteit Landbouwwetenschappen Rijksuniversiteit Gent 64:229–234Google Scholar
  18. Claver MA (1998) Biological control potential evaluation of the predator, Rhynocoris kumarii Ambrose and Livingstone (Hemiptera: Reduviidae) against three selected cotton insect pests. Ph. D. Thesis. M. S. University, Tirunelveli, IndiaGoogle Scholar
  19. Claver MA, Ambrose DP (2001) Influence of hunger level and prey density on the searching behaviour of Rhynocoris kumarii Ambrose and Livingstone (Hemiptera: Reduviidae), a potential predator of Spodoptera litura Fabricius (Lepidoptera: Noctuidae). J Entomol Res 25(4):309–313Google Scholar
  20. Cohen AC (2000) Feeding fitness and quality of domesticated and feral predators: effects of long-term rearing on artificial diet. Biol Control 13:49–54CrossRefGoogle Scholar
  21. De Clercq P, Degheele D (1993) Quality assessment of the predatory bugs Podisus maculiventris (Say) and Podisus sagitta (Fab.) (Heteroptera: Pentatomidae) after prolonged rearing on a meat—based artificial diet. Biocontrol Sci Tech 3(2):133–139CrossRefGoogle Scholar
  22. Doutt RL (1959) The biology of parasitic Hymenoptera. Annu Rev Entomol 4:161–182CrossRefGoogle Scholar
  23. El- Sebaey IIA, Abd El-Wahab HA (2003) Suppression of Bemisia tabaci (Genn), Aphis gossypii Glov. and Spodoptera littoralis (Bosid) by Coranus africana El-Sebaey (Het.: Reduviidae) in tomato field. Bull Fac Sci Cairo Univ 54(1):141–150Google Scholar
  24. El- Sebaey IIA, Abd El-Wahab HA (2007) Evaluation the role of the assassin bug, Coranus africana El-Sebaey (Heteroptera: Reduviidae) in the suppression of different infestation levels of Aphis gossypii Glov. in Cucumber and squash fields. Egypt J Agric Res 85(2):489–496Google Scholar
  25. El- Sebaey IIA, Abd El-Wahab HA, Ibrahim SA (2002) Suppression of white fly Bemisia tabaci (Genn.) with Augmentative release of assassin bug, Coranus africana El-Sebaey (Het; Reduviidae) in cucumber green house. J Unio Arab Biol Cairo 17((A):197–205Google Scholar
  26. El- Sebaey IIA, Abd El-Wahab HA, Ibrahim SA (2004) Evaluation of the role of the predatory bug Coranus africana El-Sebaey (Heteroptera: Reduviidae) in the suppression of different infestation levels of the white fly Bemisia tabaci in tomato field. Al- Azhar J Agric Res 39:31–44Google Scholar
  27. El-Sebaey IIA, El-Wahab HAA (2011) Effect of different stages of reduviid predator Corans africana El-sebaey hemiptera: heteroptera, on the population of Bemisia tabaci genn in tomato field at Qalubia and Bani-swif governorates. Egypt J Agric Res 89(2):413–430Google Scholar
  28. Grundy P, Maelzer D (2000a) Assessment of Pristhesancus plagipennis (Walker) (Hemiptera: Reduviidae) as an augmented biological control in cotton and soybean crops. Aust J Entomol 39:305–309. doi: 10.1046/j.1440-6055.2000.00182.x CrossRefGoogle Scholar
  29. Grundy P, Maelzer D (2000b) Predation by the assassin bug Pristhesancus plagipennis (Walker) (Hemiptera: Reduviidae) of Helicoverpa armigera (Hubner) (Lepidoptera : Noctuiidae) and Nezara viridula (L.) (Hemiptera : Pentatomidae) in the laboratory. Aust J Entomol 39:280–282CrossRefGoogle Scholar
  30. Grundy P, Maelzer D (2000c) Assessment of Pristhesancus plagipennis (Walker) (Hemiptera: Reduviidae) as an augmented biological control in cotton and soybean crops. Aust J Entomol 39:305–309CrossRefGoogle Scholar
  31. Grundy PR, Maelzer DA (2002) Augmentation of the assassin bug Pristhesancus plagipennis (Walker) (Hemiptera: Reduviidae) as a biological control agent for Helicoverpa spp. in cotton. Aust J Entomol 41(2):192–196CrossRefGoogle Scholar
  32. Hagler JR, Cohen AC (1991) Prey selection by in vitro‐and field‐reared Geocoris punctipes. Entomol Exp Appl 59(3):201–205Google Scholar
  33. Hart ER (1986) Genus Zelus Fabricius in the United States, Canada, and Northern Mexico (Hemiptera: Reduviidae). Ann Entomol Soc Am 79(3):535–548CrossRefGoogle Scholar
  34. Hole DG, Perkins AJ, Wilson JD, Alexanderd IH, Gricee PV, Evans AD (2005) Does organic farming benefit biodiversity? Biol Conserv 122:113–130CrossRefGoogle Scholar
  35. Jayanthi M, Singh KM, Singh RN (2000) Economics of insecticidal schedule against groundnut pests. Indian J Entomol 62(1):5–10Google Scholar
  36. Kalyanasundaram M, Dhandapani N, Swamiappan M, Sundarababu PC, Jeyaraj S (1994) A study on the management of some pests of groundnut (Arachis hypogaea L.) with biocontrol agents. J Biol Control 8(1):1–4Google Scholar
  37. Krishnaiah K (1980) Assessment of crop loses due to pests and diseases (Govindu HC, ed.). UAS Technical Series No. 33, pp 259–267Google Scholar
  38. Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201CrossRefPubMedGoogle Scholar
  39. Mead FW (1999) Wheel bug, Arilus cristatus (Linnaeus) (Insecta: Hemiptera: Reduviidae). University of Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, EDISGoogle Scholar
  40. Morrison RK, King EG (1976) Mass production of natural enemies. In: Ridgway RL, Vinson SB (eds) Biological control by augmentation of natural enemies. Plenum Press, New York, pp 183–217Google Scholar
  41. Napompeth B, Winotai A, Sommartya P (1989) Utilization of natural enemies for biological control of the leucaena psyllid in Thailand. Leucaena Psyllid: Probl Manag 175–180Google Scholar
  42. Panchabhavi KS, Nethradhaniraj CR (1987) Yield of groundnut as affected by varying larval density of Spodoptera litura Fabricius (Lepidoptera : Noctuidae). Indian J Agric Sci 57(7):525–527Google Scholar
  43. Peter C, David BV (1998) Residual toxicity of some insecticides on the first and third instar larvae of Spodoptera litura F. (Lepidoptera : Noctuidae). Trop Pest Manag 34(1):24–26CrossRefGoogle Scholar
  44. Peveling R, Attignon S, Langewald J, Owambama Z (1999) An assessment of the impact of biological and chemical control agents on groundnut dwelling arthropods in Nigar, based on presence and absence sampling. Crop Prod 18:323–339CrossRefGoogle Scholar
  45. Ramaraju K, Rajamanicakam K, Sridharan C (1998) Efficacy of insecticides and botanicals against pests of groundnut. Pestology 22(8):27–30Google Scholar
  46. Richman DB, Hemenway RC, Whitcomb WH (1980) Field cage evaluation of predators of the soybean looper, Pseudoplusia includens (Lepidoptera: Noctuidae). Environ Entomol 9(3):315–317CrossRefGoogle Scholar
  47. Sahayaraj K (1999a) Effect of prey and their age on the feeding preference of Rhynocoris marginatus (Fab.). Int Arachis Newsl 19:39–41Google Scholar
  48. Sahayaraj K (1999b) Field evaluation of Rhynocoris marginatus (Fab.) against two groundnut defoliators. Int Arachis Newsl 19:41–42Google Scholar
  49. Sahayaraj K (2002a) Small-scale laboratory rearing of reduviid predator Rhinocoris marginatus (Fab.) (Hemiptera : Reduviidae) on Corcyra cephalonica Stainton larvae by larval card method. J Central Eur Agric 3(2):137–148Google Scholar
  50. Sahayaraj K (2002b) Field bioefficacy of a reduviid predator Rhynocoris marginatus and plant products against Aproaerema modicella and Spodoptera liltura of groundnut. Indian J Entomol 64(3):292–300Google Scholar
  51. Sahayaraj K, Martin P (2003) Assessment of Rhynocoris marginatus (Fab.) (Hemiptera : Reduviidae) as augmented control in groundnut pests. J Cent Eur Agric 4(2):103–110Google Scholar
  52. Sahayaraj K, Ravi C (2007a) Evaluation of reduviid predators and plant products against chosen groundnut pests. Arch Phytopathol Plant Protect 40(4):281–290CrossRefGoogle Scholar
  53. Sahayaraj K, Ravi C (2007b) Small-scale mass production strategy for a reduviid predator Rhynocoris longifrons Stal (Heteroptera: Reduviidae). In: Guptha VK, Verma AK (eds) Perspective in animal ecology and reproduction, vol 4. Daya Publishing House, New Delhi, pp 53–81. ISBN 9788170354598Google Scholar
  54. Schaefer CW (1988) Reduviidae (Hemiptera : Heteroptera) as agents of biological control. In: Anantha subramanian KS, Venkatesan P, Sivaraman (eds) Bicovas, vol 1. Loyola College, Madras, pp 27–33Google Scholar
  55. Snyder GB, Finke DL, Snyder WE (2008) Predator biodiversity strengthens aphid suppression across single- and multiple-species prey communities. Biol Control 44:52–60CrossRefGoogle Scholar
  56. Speranza S, Melo MC, Luna MG, Virla EG (2014) First record of Zelus obscuridorsis (Hemiptera: Reduviidae) as a predator of the South American tomato Leafminer, Tuta absoluta (Lepidoptera: Gelechiidae). Fla Entomol 97(1):295–297CrossRefGoogle Scholar
  57. Sridhar V, Mahto Y (2000) Pest and natural enemy complex of groundnut (Arachis hypogaea L.) CV. ICGS – 1 in the agroecosystem of Delhi. Indian J Entomol 62(4):335–340Google Scholar
  58. Straub CS, Snyder WE (2006) Species identity dominates the relationship between predator biodiversity and herbivore suppression. Ecology 87(2):277–282CrossRefPubMedGoogle Scholar
  59. Usman A, Ofori K, Danquah EY, Offei SK, Ado SG (2015) Genetic analysis of groundnut rosette virus disease in groundnut (Archis hypogaea L.). Afr J Plant Sci 9(3):115–123CrossRefGoogle Scholar
  60. Van Driesche RG, Bellows TS (1996) Biological control. Chapman and Hall, New YorkCrossRefGoogle Scholar
  61. Wightman JA, Rao GVR (1993) A groundnut insect identification hand book for India, Information Bulletin No. 39. ICRISAT, PatancheruGoogle Scholar
  62. Wilby A, Villareal SC, Lan LP, Heong KL, Thomas MB (2005) Functional benefits of predator species diversity depend on prey identity. Ecol Entomol 30:497–501CrossRefGoogle Scholar
  63. Wygodzinsky P (1949) Elenco sistematico de los reduviiformes americanos. Tucumán.Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • K. Sahayaraj
    • 1
  • R. Balasubramanian
    • 2
  1. 1.St. Xavier’s College, PalayamkottaiTirunelveliIndia
  2. 2.National Institute of VirologyAlappuzhaIndia

Personalised recommendations