Skip to main content

Body Total Protein and Genomic DNA

  • Chapter
  • First Online:
  • 235 Accesses

Abstract

Predatory reduviids consume partially digested food. Before consuming the host, predators predigested the host with the help of the salivary enzyme. In order to understand interaction pathways within complex food webs, it is necessary to characterize encounter frequencies between each constituent part of the web and describe the consequence of these interactions. The overall mean protein concentration was high in Spodoptera litura followed by Rhynocoris marginatus, Dysdercus cingulatus, and pig liver and Corcyra cephalonica. Six primers were tested to amplify the DNA of the predator. A total of 52 amplicons were obtained in which four primers in five populations of Rhynocoris marginatus were analyzed. The electrophoretic pattern reveals polymorphism occurred among predator populations. DNA polymorphism with 450 bp was common among three diets such as Corcyra cephalonica weekly once with water, oligidic diet and weekly once Corcyra cephalonica, and Spodoptera litura. Among the six primers, KTG-3 and KTG-5 have amplified better than other primers. The level of genetic diversity is far greater in the oligidic diet-reared Rhynocoris marginatus. Rhynocoris marginatus fed with Spodoptera litura and OD-reared predator yielded consistently high absorbance values followed by Corcyra cephalonica fed

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agusti N, Cohen AC (2000) Lygus hesperus and L.lineolaris (Hemiptera: Miridae), phytophages, zoophages, or omnivores: evidence of feeding adaptations suggested by the salivary and midgut digestive enzymes. J Entomol Sci 35:176–186

    CAS  Google Scholar 

  • Agusti N, de Vicente MC, Gabarra R (1999) Development of sequence amplified characterized region (SCAR) markers of Helicoverpa armigera: a new polymerase chain reaction-based technique for predator gut analysis. Mol Ecol 8:1467–1474

    Article  CAS  PubMed  Google Scholar 

  • Agusti N, de Vicente MC, Gabarra R (2000) Developing SCAR markers to study predation on Trialeurodes vaporariorum. Insect Mol Biol 9:263–268

    Article  CAS  PubMed  Google Scholar 

  • Aussel J-P, Linley JR (1994) Natural food and feeding behavior of Culicoides furens larvae (Diptera: Ceratopogonidae). J Med Entomol 31:99–104

    Article  CAS  PubMed  Google Scholar 

  • Bohan DA, Bohan AC, Glen DM, Symondson WOC, Wiltshire CW, Hughes L (2000) Spatial dynamics of predation by carabid beetles on slugs. J Anim Ecol 69:367–379

    Article  Google Scholar 

  • Bradfield JY, Berlin RL, Keeley LL (1990) Contrasting modulation of gene expression by a juvenile hormone analog. Insect Biochem 20:105–111

    Article  CAS  Google Scholar 

  • Botto-Mahan C, Ortiz S, Rozas M, Cattan PE, Solri A (2005) DNA evidence of Trypanosoma cruxi in the Chilean vector Mepraria spinolai (Hemiptera: Reduviiae). Mem Insect Oswalde Crux Rio de Ianeire 100(3):237–239

    Article  Google Scholar 

  • Chen Y, Giles KL, Payton ME, Greenstone MH (2000) Identifying key cereal aphid predators by moleculargut analysis. Mol Ecol 9:1887–1898

    Article  CAS  PubMed  Google Scholar 

  • Cohen AC (1993) Organization of digestion and preliminary characterization of salivary trypsin-like enzymes in a predaceousheteropteran, Zelus renardii. J Insect Physiol 39:823–829

    Article  CAS  Google Scholar 

  • Cohen AC (1998a) Solid-to-liquid feeding: the inside(s) story of extra-oral digestion in predaceous Arthropoda. Am Entomol 44:103–117

    Article  Google Scholar 

  • Cohen AC (1998b) Biochemical and morphological dynamicsand predatory feeding habitsin terrestrial heteroptera. In: Ruberson JR, Coll M (eds) Predaceous heteroptera: implications for biological control. Thomas Say Publications in Entomology. Entomological Society of America, Lanham, pp 21–32

    Google Scholar 

  • Crook A, Solomon M (1997) Predators of vine weevil in soft fruit plantations. New developments in the soft fruit industry. Proceedings of a conference organized by ADAS, HRI and EMRA in Association with CCFRA, HDC and the Grower Magazine, pp 83–87. Horticulture Research International, Ashford, UK

    Google Scholar 

  • Dodd C, Bruford M, Symondson W (2003) Detection of slug DNA within carabid (Coleoptera: Carabidae). Annu Rev Entomol 41:231–256

    Google Scholar 

  • Gordon ER, Weirauch C (2015) Efficient capture of natural history data reveals prey conservatism of cryptic termite predators. Mol Phylogenet Evol 94:65–73

    Article  PubMed  Google Scholar 

  • Greenstone MH (1996) Serological analysis of arthropod predation: past, present and future. In: Symondson WOC, Liddell JE (eds) The ecology of agricultural pests: biochemical approaches. Chapman and Hall, London, pp 265–300

    Google Scholar 

  • Greenstone MH, Hunt JH (1993) Determination of prey antigen half-life in Polistes metricus using a monoclonal antibody-based immunodot assay. Entomol Exp Appl 68:1–7

    Article  Google Scholar 

  • Greenstone MH, Rowley DL, Heimbach U, Lundgren JG, Pfannenstiel RS, Rehner SA (2005) Barcoding generalist predators by polymerase chain reaction: carabids and spiders. Mol Ecol 14:3247–3266

    Article  CAS  PubMed  Google Scholar 

  • Greenstone MH, Tillman PG, Hu JS (2014) Predation of the newly invasive pest Megacopta cribraria (Hemiptera: Plataspidae) in soybean habitats adjacent to cotton by a complex of predators. J Econ Entomol 107(3):947–954

    Article  CAS  PubMed  Google Scholar 

  • Hagler JR (1998) Variation in the efficacy of several predator gut content immunoassays. J Biol Control 12:25–32

    Article  Google Scholar 

  • Hagler JR, Cohen AC (1990) Effects of time and temperature on digestion of purified antigen by Geocoris punctipes (Hemiptera: Lygaeidae) reared on artificial diet. Ann Entomol Soc Am 83:1177–1180

    Article  Google Scholar 

  • Hagler JR, Naranjo SE (1994a) Determining the frequency of heteropteran predation on sweet-potato whitefly and pinkbollworm using multiple ELISAs. Entomol Exp Appl 72:59–66

    Article  Google Scholar 

  • Hagler JR, Naranjo SE (1994b) Qualitative survey of two coleopteran predators of Bemisia tabaci (Homoptera: Aleyrodidae) and Pectinophora gossypiella (Lepidoptera: Gelechiidae) using multiple prey gut content ELISA. Environ Entomol 23:193–197

    Article  Google Scholar 

  • Hagler JR, Naranjo SE (1997) Measuring the sensitivity of an indirect predator gut content ELISA: detectability of prey remains in relation to predator species, temperature, time, and meal size. J Biol Control 9:112–119

    Article  Google Scholar 

  • Hagler JR, Naranjo SE (2004) A multiple ELISA system for simultaneously monitoring intercrop movement and feeding activity of massreleased insect predators. Int J Pest Manag 50:199–207

    Article  Google Scholar 

  • Hagler JR, Naranjo SE (2005) Use of a gut content ELISA to detect whitefly predator feeding activity after field exposure to different insecticide treatments. Biocontrol Sci Tech 15:321–339

    Article  Google Scholar 

  • Hagler JR, Cohen AC, Bradley-Dunlop D, Enriquez FJ (1992) Field evaluation of predation using a species-andstage-specific monoclonal antibody. Environ Entomol 21:896–900

    Article  Google Scholar 

  • Hagler JR, Brower AG, Tu Z, Byrne DN, Bradley‐Dunlop D, Enriquez FJ (1993) Development of a monoclonal antibody to detect predation of the sweetpotato whitefly, Bemisia tabaci. Entomol Exp Appl 68(3):231–236

    Google Scholar 

  • Hagler JR, Naranjo SE, Bradley-Dunlop D, Enriquez FJ, Henneberry TJ (1994) A monoclonal antibody to pink bollworm (Lepidoptera: Gelechiidae) egg antigen: a tool for predator gut analysis. Ann Entomol Soc Am 87(1):85–90

    Article  Google Scholar 

  • Hagler JR, Naranjo SE, Erickson ML, Machtley SA, Wright SF (1997) Immunological examinations of species variability in predator gut content assays: effects of predator: prey protein ratio on immunoassay sensitivity. J Biol Control 9:120–128

    Article  Google Scholar 

  • Halaj J, Wise DH (2002) Impact of a detrital subsidy on trophic cascades in a terrestrial grazing food web. Ecology 83:3141–3151

    Article  Google Scholar 

  • Harper GL, King RA, Dodd CS, Harwood JD, Glen DM, Bruford MW, Symondson WOC (2005) Rapid screening of invertebrate predators for multiple prey DNA targets. Mol Ecol 14:819–828

    Article  CAS  PubMed  Google Scholar 

  • Harwood JD, Sunderland KD, Symondson WOC (2004) Prey selection by linyphiid spiders: molecular tracking of the effects of alternative prey on rates of aphid con-sumption in the field. Mol Ecol 13:3549–3560

    Article  PubMed  Google Scholar 

  • Harwood JD, Sunderland KD, Symondson WOC (2005) Monoclonal antibodies reveal the potential of the tetragnathid spider Pachygnatha degeeri (Araneae: Tetragnathidae) as an aphid predator. Bull Entomol Res 95:161–167

    Google Scholar 

  • Hoogendoorn M, Heimpel GE (2001) PCR-based gut content analysis of insect predators: using ribosomal ITS-1 fragments from prey to estimate predation frequency. Mol Ecol 10:2059–2067

    Article  CAS  PubMed  Google Scholar 

  • Hoogendoorn M, Heimpel GE (2002) PCR-based gut content analysis of insect predators: using ITS-1 fragments from prey to estimate predation frequency. In: Van Dreische RG (ed) Proceedings of the 1st international symposium on biological control of arthropods, Honolulu, Hawaii, 2002. USDA, Morgantown, pp 91–97

    Google Scholar 

  • Jeyaraman J (1981) Laboratory manual in biochemistry. Willey Limited, New Delhi, p 85

    Google Scholar 

  • Kajiura Z, Yamashita O (1989) Stimulated synthesis of the female specific staorage protein in male larvae of the silkworm, Bombyx mori, treated with junvenile hormone analog. Arch Insect Biochem Physiol 12:99–109

    Article  CAS  Google Scholar 

  • Koss AM, Snyder WE (2005) Alternative prey disrupt biocontrol by a guild of generalist predators. Biol Control 32:243–251

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Legaspi JC, Legaspi BC, Meaghher RL, Ciomperlik MA (1996) Evaluation of Serangium parcesetosum (Coleoptera: Coccinellidae) as a biological control agent of the silverleaf whitefly (Homoptera: Aleyrodidae). Environ Entomol 25:1421–1427

    Article  Google Scholar 

  • Lim UT, Lee JH (1999) Enzyme-linked immunosorbent assay used to analyze predation of Nilaparvata lugens (Homoptera: Delphacidae) by Pirata subpiraticus (Araneae: Lycosidae). Environ Entomol 28:1177–1182

    Article  Google Scholar 

  • Lovei GL, Sopp PI, Sunderland KD (1990) Digestion rate in relation to alternative feeding in three species of polyphagouus predators. Ecol Entomol 15:293–300

    Article  Google Scholar 

  • Luck RF, Shepard BM, Kenmore PE (1988) Experimental methods for evaluating arthropod natural enemies. Annu Rev Entomol 33:367–391

    Article  Google Scholar 

  • Madsen M, Terkildsen S, Toft S (2004) Microcosm studies on control of aphids by generalist arthropod predators: effects of alternative prey. BioControl 49:489–504

    Article  Google Scholar 

  • Mansfield S, Hagler JR, Whitehouse MEA (2008) A comparative study of the efficiency of a pest-specific and prey-marking ELISA for detection of predation. Entomol Exp Appl 127:199–206

    Article  Google Scholar 

  • McIver J (1981) An examination of the utility of the precipitin test for evaluation of arthropod predator-prey relationships. Can Entomol 113:213–222

    Article  Google Scholar 

  • Mjeni AM, Morrison PE (1976) Junvenile horomoe analogue and egge development in the blowfly, Phormia regina (Meig.). Gen Comp Endocrinol 28:321–349

    Article  Google Scholar 

  • Morales ME, Wesson DM, Sutherland IW, Impoinvil DE, Mbogo CM, Githure JI, Beier JC (2003) Determination of Anopholes gamibiae larval DNA in the gut of insectivorous dragonfly (Libellulidae) nymphs by polymerase chain reaction. J Am Mosq Control Assoc 19:163–165

    CAS  PubMed  Google Scholar 

  • Munyaneza J, Obrycki JJ (1998) Searching behavior of Coleomegilla maculata larvae feeding on Colorado potato beetle eggs. Biol Control 13:85–90

    Article  Google Scholar 

  • Naranjo SE, Hagler JR (1998) Characterizing and estimating the impact of heteropteran predation. In: Coll M, Ruberson J (eds) Predatory Heteroptera: their ecology and use in biological control. Entomological Society of America, Lanham, pp 170–197

    Google Scholar 

  • Nigam CS, Omkar (2003) Experimental animal physiology and biochemistry. New Age International (p) Limited, Publishers, New Delhi

    Google Scholar 

  • Pierce GJ, Boyle PR (1991) A review of methods for dietanalysis in piscivorous marine mammals. Oceanogr Mar Biol 29:409–486

    Google Scholar 

  • Powell W, Walton MP, Jervis MA (1996) Populations and communities. In: Jervis M, Kidd NAC (eds) Insect natural enemies. Chapman and Hall, London, pp 223–293

    Chapter  Google Scholar 

  • Ruberson JR, Greenstone MH (1998) Predators of budworm/bollworm eggs in cotton: an immunological study. Proceedings of the 1998 Beltwide Cotton Conferences, 2: 1095–1098

    Google Scholar 

  • Sahayaraj K (2004) Reduviids in biological control. In: Sahayaraj K (ed) Indian insect predators in biological control. Dayas Publication, India, pp 134–166. ISBN 8170353408

    Google Scholar 

  • Sambrook J, Fritsch EF, Manistis T (1989) In: Nolan C (ed) Molecular cloning: a laboratory manual volumes I – III. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sansone CG, Smith JW Jr (2001) Identifying predation of Helicoverpa zea (Lepidoptera: Noctuidae) eggs by Orius spp. (Hemiptera: Anthocoridae) in cotton by using ELISA. Environ Entomol 30:431–438

    Google Scholar 

  • Shapiro JP, Legaspi JC (2006) Assessing biochemical fitness of predator Podisus maculiventris (Heteroptera: Pentatomidae) in relation to food quality: effects of Wve species of prey. Ann Entomol Soc Am 99:321–326

    Article  Google Scholar 

  • Sheppard SK, Harwood JD (2005) Advances in molecular ecology: tracking trophic links through predator–prey food‐webs. Funct Ecol 19(5):751–762

    Article  Google Scholar 

  • Sheppard SK, Henneman ML, Memmott J, Symondson WOC (2004) Infiltration by alien predators into invertebrate food webs in Hawaii: a molecular approach. Mol Ecol 13:2077–2088

    Article  CAS  PubMed  Google Scholar 

  • Sigsgaard L, Greenstone MH, Duffield SJ (2002) Egg cannibalism in Helicoverpa zea on sorghum and pigeonpea. Biol Control 47:151–165

    Google Scholar 

  • Sleaford F, Bignell DE, Eggleton P (1996) A pilot analysis of gut contents in termites from the Mbalmayo Forest Reserve, Cameroon. Ecol Entomol 21:279–288

    Article  Google Scholar 

  • Sopp PI, Sunderland KD (1989) Some factors affecting the detection period of aphid remains in predators using ELISA. Entomol Exp Appl 51:11–20

    Article  Google Scholar 

  • Sopp PI, Sunderland KD, Fenlon JS, Wratten SD (1992) An improved quantitative method for estimating invertebrate predation in the field using an enzyme-linked immunosorbent assay (ELISA). J Appl Ecol 29:295–302

    Article  Google Scholar 

  • Sunderland KD (1988) Quantitative methods for detecting invertebrate predation occurring in the field. Annu Appl Biol 112:201–224

    Article  Google Scholar 

  • Sunderland KD (1996) Progress in quantifying predationusing antibody techniques. In: Symondson WOC, Liddell JE (eds) The ecology of agricultural pests: biochemical approaches. Chapman and Hall, London, pp 419–455

    Google Scholar 

  • Suntherland RM (2000) Molecular analysis of avian diets. PhD Thesis, University of Oxford, Oxford

    Google Scholar 

  • Symondson WOC (2002) Molecular identification of preying predator diets. Mol Ecol 11:627–641

    Article  CAS  PubMed  Google Scholar 

  • Symondson WOC, Liddell JE (1993) A monoclonal antibody for the detection of arionid slug remains in carabid predators. Biol Control 3:207–214

    Article  Google Scholar 

  • Symondson WOC, Erickson ML, Liddell JE (1997) Species-specific detection of predation by coleoptera on the milacid slug Tandonia budapestensis (Mollusca: Pulmonata). Biocontrol Sci Tech 7:457–465

    Article  Google Scholar 

  • Symondson WOC, Erickson ML, Liddell JE (1999a) Development of a monoclonal antibody for the detection and quantification of predation on slugs within the Arion hortensis Agg. (Mollusca: Pulmonata). Biol Control 16:274–282

    Article  Google Scholar 

  • Symondson WOC, Erickson ML, Liddell JE, Jayawardena KGI (1999b) Amplified detection, using a monoclonal antibody, of an aphid-specific epitope exposed during digestion in the gut of a predator. Insect Biochem Mol Biol 29:873–882

    Article  CAS  PubMed  Google Scholar 

  • Toft S (1997) Acquired food aversion of a wolf spider to three cereal aphids: intra- and interspecific effects. Entomophaga 42:63–69

    Article  Google Scholar 

  • Toft S (1999) Prey choice and spider fitness. J Arachnol 27:301–307

    Google Scholar 

  • Toft S (2005) The quality of aphids as food for generalist predators: implications for natural control of aphids. Eur J Entomol 102:371–383

    Article  Google Scholar 

  • Triltsch H (1997) Gut contents in field sampled adults of Coccinella septempunctata (Coleoptera: Coccinellidae). Entomophaga 42:125–131

    Article  Google Scholar 

  • Winder L, Alexander CL, Holland JM, Symondson WOC, Perry J, Woolley C (2005) Predatory activity and spatial pattern: the response of generalist carabids to their aphid prey. J Anim Ecol 74:443–454

    Article  Google Scholar 

  • Wise DH, Moldenhauer DM, Halaj J (2006) Using stable isotopes to reveal shifts in prey consumption by generalist predators. Ecol Appl 16:865–876

    Article  PubMed  Google Scholar 

  • Zaidi RH, Jaal Z, Hawkes NJ, Hemingway J, Symondson WOC (1999) Can multiplecopy sequences of prey DNA be detected amongst the gut contents of invertebrate predators? Mol Ecol 8:2081–2087

    Article  CAS  PubMed  Google Scholar 

  • Zhao WC, Cheng JA, Chen ZX (2004) Development of a monoclonal antibody to detect predation of the brown planthopper Nilaparvata lugens (Stal). Int J Pest Manag 50:317–321

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sahayaraj, K., Balasubramanian, R. (2016). Body Total Protein and Genomic DNA. In: Artificial Rearing of Reduviid Predators for Pest Management . Springer, Singapore. https://doi.org/10.1007/978-981-10-2522-8_6

Download citation

Publish with us

Policies and ethics