Skip to main content

Abstract

The diverse feeding habits of Rhynocoris marginatus make the Reduviidae ideal for studies of feeding strategies, including digestive enzyme composition. Wide ranges of digestive enzymes were recorded in the alimentary canal of insects, and their level varies in relation to diet. Digestive enzymes play a major role in insect physiology by converting complex food materials into micromolecules necessary to provide energy and metabolites for growth, development, and other vital functions. These enzymes are produced and distributed in various regions of the gut and salivary gland in different proportions and quantities. It is hypothesized macromolecules in the prey dramatically influence reduviid growth and development mediated through qualitative and quantitative regulation of digestive enzymes. The attempt was made to study the quantitative profile of digestive enzymes in relation to different preys and oligidic diet-reared predator. Rhynocoris marginatus foregut and hindgut contain amylase, protease, invertase, and lipase. Amylase, invertase, and lipase activities of both the foregut and hindgut were high, while R. marginatus was fed with Corcyra cephalonica followed by artificial diet and Spodoptera litura. The hindgut enzyme activities were decreased (++), and similar kinds of observations were recorded for artificial diet and Spodoptera litura. The results show that generally prey type and artificial diet do not have any influence on the enzyme qualitative profile of this reduviid. In salivary gland, all the enzyme activities were moderate (++) except lipase (+) when Corcyra cephalonica and Spodoptera litura provided food. The activity was reduced (+) on Corcyra cephalonica and artificial diet for Rhynocoris marginatus. Results clearly show provision of artificial diet has not changed the enzyme levels in the foregut and midgut of this predator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agusti N, Cohen AC (2000) Lygus hesperus and L.lineolaris (Hemiptera: Miridae), phytophages, zoophages, or omnivores: evidence of feeding adaptations suggested by the salivary and midgut digestive enzymes. J Entomol Sci 35:176–186

    CAS  Google Scholar 

  • Alomar O, Wiedenmann RN (1996) Zoophytophagous Heteroptera: implications for life history and integrated pest management. Thomas Say Publications in Entomology. Entomological Society of America, Lanham

    Google Scholar 

  • Ambrose DP, Maran SPM (2000) Polymorphic diversity in salivary and haemolymph proteins and digestive physiology of assassin bug Rhynocoris marginatus (Fab.) (Heteroptera : Reduviidae). J Appl Entomol 124:315–317. doi:10.1046/j.1439–0418.2000.00473.x

    Article  Google Scholar 

  • Azevedo DO, Zanuncio JC, Zanuncio JS, Martins GF, Marques-Silva S, Sossai MF, Serrao JE (2007) Biochemical and morphological aspects of salivary glands of the predator Brontocoris tabidus (Heteroptera: Pentatomidae). Braz Arch Biol Technol 50(3):469–477

    Article  CAS  Google Scholar 

  • Baker JE (1991) Purification and partial characterization of amylase allozmes from lesser grain borer, Rhyzopertha dominica. Insect Biochem 21:303–311

    Article  CAS  Google Scholar 

  • Balasubramanian TP, Lakshmana Perumal Swamy D, Mohan C, Natarajan R (1975) Cellulolytic activity of marine streptomycetes isolated from the alimentary canal of marine borer. 16th annual conference of AMI, held at virbadhra (U.P.)

    Google Scholar 

  • Balogun RA, Fisher O (1970) Studies on the digestive enzymes of the common african toad, Bufo regulasis bonlenger. Comp Biochem Physiol 33:813–820

    Article  CAS  Google Scholar 

  • Baptist BA (1941) The morphology and physiology of the salivary glands of Hemiptera-Heteroptera. Q J Microsc Sci 83:91–139

    Google Scholar 

  • Boyd DW Jr (2003) Digestive enzymes and stylet morphology of Deraeocoris nigritulus (Uhler) (Hemiptera: Miridae) reflect adaptations for predatory habits. Ann Entomol Soc Am 96(5):667–671

    Article  Google Scholar 

  • Boyd DW, Jr (2001) Deraeocoris nebulosus (Uhler) (Hemiptera: Miridae): a potential biological control agent. Ph.D. dissertation, Clemson University, Clemson, SC

    Google Scholar 

  • Boyd DW Jr, Cohen AC, Alverson DR (2002) Digestive enzymes and stylet morphology of Deraeocoris nigritulus (Uhler) (Hemiptera: Miridae) a predacious plant bug. Ann Entomol Soc Am 95:395–401

    Article  CAS  Google Scholar 

  • Broadway RM, Villani MG (1995) Does host range influence susceptibility of herbivorous insects to non‐host plant proteinase inhibitors? Entomol Exp Appl 76(3):303–312

    Article  CAS  Google Scholar 

  • Brock RM, Forsberg CW, Buchanan-Smith JG (1982) Proteolytic activity of rumen microorganisms and effect of proteinase inhibitors. Appl Environ Microbiol 44:561–569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cobben RH (1979) On the original feeding habits of the Hemiptera (Insecta): a reply to Merrill Sweet. Ann Entomol Soc Am 72:711–715

    Article  Google Scholar 

  • Cohen AC (1990) Feeding adaptations of some predaceous Hemiptera. Ann Entomol Soc Am 83(6):1215–1223

    Article  Google Scholar 

  • Cohen AC (1993) Organization of digestion and preliminary characterization of salivary trypsin-like enzymes in a predaceousheteropteran, Zelus renardii. J Insect Physiol 39:823–829

    Article  CAS  Google Scholar 

  • Cohen AC (1995) Extra-oral digestion in predaceous terrestrial Arthropoda. Annu Rev Entomol 40:85–103

    Article  CAS  Google Scholar 

  • Cohen AC (1996) Plant feeding by predatory Heteroptera: evolutionary and adaptational aspects of trophic switching. In: Alomar O, Wiedenmann RN (eds) Zoophytophagous heteroptera: implicationsfor life history and integrated pest management. Thomas Say Publicationsion Entomology. Entomological Society of America, Lanham, pp 1–17

    Google Scholar 

  • Cohen AC (1998a) Solid-to-liquid feeding: the inside(s) story of extra-oral digestion in predaceous Arthropoda. Am Entomol 44:103–117

    Article  Google Scholar 

  • Cohen AC (1998b) Biochemical and morphological dynamicsand predatory feeding habitsin terrestrial heteroptera. In: Ruberson JR, Coll M (eds) Predaceous heteroptera: implications for biological control. Thomas Say Publications in Entomology. Entomological Society of America, Lanham, pp 21–32

    Google Scholar 

  • Cohen AC (2000) Feeding fitness and quality of domesticated and feral predators: effects of long-term rearing on artificial diet. Biol Control 13:49–54

    Article  Google Scholar 

  • Cohen AC, Wheeler AG Jr (1998) Role of saliva in the highly destructive fourlined plant bug (Hemiptera: Miridae: Mirinae). Ann Entomol Soc Am 91:94–100

    Article  Google Scholar 

  • Colebatch G, East P, Cooper P (2001) Preliminary characterisation of digestive proteases of the green mirid, Creontiades dilutus (Hemiptera: Miridae). Insect Biochem Mol Biol 31:415–423

    Article  CAS  PubMed  Google Scholar 

  • Coolbear T, Danial R, Morgan (1992) The enzymes from extreme thermophilies, bacteria sources, thermo strains identified as extremely thermophilic bacilli for extra cellular proteolytic activity and general property of proteinases from two of the strains. J Appl Bacterialogy 71:525

    Google Scholar 

  • Dani MP, Edwards JP, Richards EH (2005) Hydrolase activity in the venom of the pupal endoparasitic wasp, Pimpla hypochondriaca. Comp Biochem Physiol B Biochem Mol Biol 141(3):373–381

    Article  CAS  PubMed  Google Scholar 

  • Edwards JS (1961) The action and composition of the saliva of an assassin bug Platymeris rhadamanthus Gaerst. (Hemiptera: Reduviidae). J Exp Biol 8:61–77

    Google Scholar 

  • Grenier S (1977) Effets nocifs de la nipagine M sur le parasitoïde Phryxe caudata [Dipt.: Tachinidae]. Entomophaga 22:23–26

    Article  Google Scholar 

  • Heil M, Rita buchler R, Boland W (2004) Quantification of invertase activity in ants under field conditions. J Chem Ecol:RC177–RC183

    Google Scholar 

  • Hori K (1969) Effect of various activators on the salivary amylase of the bug Lygus disponsi. J Physiol 15:2305–2317

    CAS  Google Scholar 

  • Hori K (1972) Comparative study of a property of salivary amylase among various heteropterous insects. Comp Biochem Physiol 42B:501–508

    Google Scholar 

  • Hori K (1973) Studies on enzymes, especially amylases, in the digestive system of the bug Lygus disponsiand starch digestion in the system. Res Bull Obihiro Univ 8:173–260

    CAS  Google Scholar 

  • Hori K (2000) Possible causes of disease symptoms resulting from the feeding of phytophagousHeteroptera. In: Schaefer CW, Panizzi AR (eds) Heteroptera of economic importance. CRC, Boca Raton, pp 11–35

    Google Scholar 

  • House HL (1965) Digestion. In: Rockstein M (ed) Physiology of insecta, vol 2. Academic, New York, pp 818–858

    Google Scholar 

  • House HL (1967) Artificial diets for insects. A compilation of references and abstracts, Information Bulletin No. 5. Research Institute Canada Dept. Agric, Ontario

    Google Scholar 

  • Ishaaya I, Moore I, Joseph B (1971) Protease and amylase activity in the larvae of the Egyprioan cotton worm, Spodoptera littoralis. J Insect Physiol 17:945–953

    Article  CAS  Google Scholar 

  • Jayaraman J (1985) Laboratory manual in biochemistry. Wiley Eastern Ltd., New Delhi. pp 75–76, 107

    Google Scholar 

  • Khan MA (1964) Proteolytic activity in the digestive tract of the water scorpion Laccotrephis maculatus Fab. (Nepidae: Hemiptera). Entomol Experimetalis Applic 7:335–338

    Article  CAS  Google Scholar 

  • Miles PW (1972) The saliva of hemiptera. Adv Insect Physiol 9:183–256

    Article  CAS  Google Scholar 

  • Naunoff DG (2001) β‐Fructosidase superfamily: homology with some α‐L‐arabinases and β‐D‐xylosidases. Proteins: Struct Func Bioinf 42(1):66–76

    Article  Google Scholar 

  • Nigam CS, Omkar (2003) Experimental animal physiology and biochemistry. New Age International (p) Limited, Publishers, New Delhi

    Google Scholar 

  • Rastogi SC (1962) On the salivary enzymes of some phytophagous and predaceous heteropterans. Sci Cult 28:479–480

    Google Scholar 

  • Ravikumar T, Albert S, Sanjayan PK (2002) Efficiency of digestion of oligosaccharides in the gut and salivary gland of some seed feeding lygaeids (Heteroptera : Lygaeidae). Entomon 27(1):43–50

    CAS  Google Scholar 

  • Rees AR, Offord RE (1969) Studies on the protease and other enzymes from the venom of Lethocerus cordofanus. Nature 221:665–667

    Article  Google Scholar 

  • Sahayaraj K (2004) Reduviids in biological control. In: Sahayaraj K (ed) Indian insect predators in biological control. Dayas Publication, India, pp 134–166. ISBN 8170353408

    Google Scholar 

  • Sahayaraj K (2007) Isolation, identification and characterization of gut flora of three reduviid predators. Asian J Microbiol Biotechnol Environ Sci 9(4):1073–1075

    Google Scholar 

  • Sahayaraj K (2014) Reduviids and their merits in biological control. In Basic and applied aspects of biopesticides. Springer, India, p 195–214

    Google Scholar 

  • Sahayaraj K, Balasubramanian R (2008) Biological control potential evaluation of artificial and factitious diets reared Rhynocoris marginatus (Fab.) on three pest. Arch Phytopathol Plant Protect 42(3):238–247

    Article  Google Scholar 

  • Sahayaraj K, Venkatesh P, Balasubramanian R (2007a) Feeding behaviour and biology of a reduviid predator Rhynocoris marginatus (Fabricius) (Heteroptera: Reduviidae) on Oligidic Diet. Hexapoda 14(1):24–30

    Google Scholar 

  • Sahayaraj K, Kumara Sankaralinkam S, Balasubramanian R (2007b) Prey influence on the salivary gland and gut enzymes qualitative profile of Rhynocoris marginatus (Fab.) and Catamiarus brevipennis (Serville) (Heteroptera: Reduviidae). J Insect Sci 4(4):331–336

    Google Scholar 

  • Sahayaraj K, Vinoth Kanna A, Muthukumar S (2010) Gross morphology of feeding canal, salivary apparatus and digestive enzymes of salivary gland of Catamirus brevipennis (Servile) (Hemiptera: Reduvidae). J Entomol Res Soc 12(2):37–50

    Google Scholar 

  • Sahayaraj K, River D, Muthukumar S (2013) Biochemical and electrophoretic analyses of saliva from the predatory reduviid Rhynocoris marginatus (Fab.). Acta Biochim Pol 60(1):91–97

    Google Scholar 

  • Schaefer CW (1997) The origin of secondary zoophagy from herbivory in Heteroptera (Hemiptera). In: Raman A (ed) Ecology and evolution of plantfeeding insects in natural and man-made environments. International ScientiÞc Publications, New Delhi, pp 229–239

    Google Scholar 

  • Simpson SJ, Raubenheimer D (1993) A multi-level analysis of feeding behaviour: the geometry of nutritional decisions. Philos Trans R Soc Lond B Biol Sci 342(1302):381–402.bb

    Google Scholar 

  • Sunderland KD (1988) Quantitative methods for detecting invertebrate predation occurring in the field. Ann Appl Biol 112:201–224

    Article  Google Scholar 

  • Sweet MH (1979) On the original feeding habitsof hemiptera: Insecta). Annu Entomol Soc Am 72:575–579

    Article  Google Scholar 

  • Takanona T, Hori K (1974) Digestive enzymes in the salivary gland and midgut of the bug Stenotus binotatus. Comp Biochem Physiol 47A:521–528

    Article  Google Scholar 

  • Taylor GS, Miles PW (1994) Composition and variability of the saliva of coreids in relation to phytoxicoses 400 and other aspects of the salivary physiology of phytophagous heteroptera. Entomol Exp Appl 73:265–277

    Article  Google Scholar 

  • Tonapi TG (1996) Experimental entomology. CBS Publishers of Distributors, New Delhi

    Google Scholar 

  • Wheeler AG Jr (2001) Biology of the plant bugs (Hemiptera: Miridae): pests, predators, opportunists. Cornell University Press, Ithaca

    Google Scholar 

  • Wigglesworth VB (1972) The principles of insect physiology, 7th edn. Chapman and Hall, London, p 827

    Google Scholar 

  • Xie ZN, Nettles WC Jr, Morrison RK, Irie K, Vinson SB (1986) Three methods for the in vitro culture of Trichogramma pretiosum Riley. J Entomol Sci 21:133–138

    Google Scholar 

  • Yazgan S, House HL (1970) An hymenopterous insect, the parasitoid Itoplectis conquisitor reared axenically on a chemically defined synthetic diet. Can Entomol 102:1304–1306

    Article  Google Scholar 

  • Yazlovetsky IG (1992) Development of artificial diets for entomophagous insects by under standing their nutrition and digestion. In: Anderson TE, Leppla NC (eds) Advances in insect rearing for research and pest management. Westview Press, Boulder, pp 41–62

    Google Scholar 

  • Zeng F, Cohen AC (2000a) Comparisonof amylase and protease activities of a zoophytophagous and two phytozoophagous Heteroptera. Comp Biochem Physiol 126A:101–106

    Article  CAS  Google Scholar 

  • Zeng F, Cohen AC (2000b) Demonstration of amylase from the zoophytophagous anthocorid Orius insidiosus. Arch Insect Biochem Physiol 44:136–139

    Article  CAS  PubMed  Google Scholar 

  • Zeng F, Cohen AC (2001) Induction of elastase in a zoophytophagous heteropteran, Lygus Hesperus (Hemiptera: Miridae). Ann Entomol Soc Am 94:146–151

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sahayaraj, K., Balasubramanian, R. (2016). Gut Enzyme Profile. In: Artificial Rearing of Reduviid Predators for Pest Management . Springer, Singapore. https://doi.org/10.1007/978-981-10-2522-8_5

Download citation

Publish with us

Policies and ethics