Gut Autochthonous Microbes and Their Enzyme Profile

  • K. Sahayaraj
  • R. Balasubramanian


Insects dependent on various diets commonly carry symbiotic microorganisms that provide nutritional supplements for their host. Since antimicrobial agent has been reared in oligidic diet to prevent microbial contamination, it is essential to study the microbiological nature of symbiotic bacteria on artificial diet-reared predators. Studies of associations between artificial diet natural prey feeding and gut microorganisms of insect predators have sharpened appreciation for utilizing the diet in predator rearing gained importance. In this study, it tested that artificial diet has any influence on microbial community composition in Rhynocoris marginatus adults compared with natural prey source. The study suggested that the total heterotrophic bacterial population (THBP) is varied in the diet ingestion by the reduviid Rhynocoris marginatus. Among all the categories, the bacterial population was found to be higher in Spodoptera litura category followed by Corcyra cephalonica, Corcyra cephalonica with water, and oligidic diet with Corcyra cephalonica. THBP was drastically decreased in artificial diet-reared reduviids. It showed that microbe’s population was drastically altered if the food nature changed. Natural food like Spodoptera litura keeps the gut microbes viable and enriches gut natural population. A total of 14 bacterial species were recorded in artificial diet-reared Rhynocoris marginatus, followed by the Corcyra cephalonica (9) and Spodoptera litura (9). Micrococcus sp., Bacillus subtilis, Pseudomonas fluorescens, Streptococcus faecalis, and Aeromonas sp. were also isolated from the predators. Micrococcus varians was a dominant (52.70 %) species diet.

In natural prey-reared reduviid, the number of bacterial cells remained almost constant during the experiment, while the number of bacteria than other artificial diets increased. In contrast, the number of bacterial species within artificial diet-reared insect decreased. In natural prey, Spodoptera litura, nine bacteria were observed with varying numbers of bacterial cells. In T1 categories, ten bacteria species were isolated followed by species in T3 categories (artificial diet). Fourteen bacterial species were isolated from T4 category (artificial diets + Corcyra cephalonica).


Insect gut Microbial diversity Total heterotrophic bacterial populations (THBP) Hydrolytic extracellular enzyme 


  1. Abe Y, Mishiro K, Takanashi M (1995) Symbiont of brown-winged green bug, Plautia stali Scott. J Appl Entomol Zool 39:105–115CrossRefGoogle Scholar
  2. Ademolu KO, Idowu AB (2011) Occurrence and distribution of microflora in the gut regions of the variegated grasshopper Zonocerus variegatus (Orthoptera: Pyrgomorphidae) during development. Zool Stud 50(4):409–415Google Scholar
  3. Amir M, Rodgers A, Hughes DE (1959) Purification and properties of a polymetaphosphatase from Corynebacterium xerosis. J Gen Microbiol 20(3):482–495CrossRefGoogle Scholar
  4. Anand AA, Vennison SJ, Sankar SG, Prabhu DI, Vasan PT, Raghuraman T, Geoffrey CJ, Vendan SE (2010) Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. J Insect Sci 10:107. doi: 10.1673/031.010.10701 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baumann P, Moran NA (1997) Non-cultivable microorganisms from symbiotic association of insect and other hosts. Anton Leeuw 72:38–48Google Scholar
  6. Biggs DR, Mc Greego PG (1994) Gut pH and amylase and protease activity in larvae of the New Zealand grues grab (Costelytra zealanticus) (Coleptera: Scarbaeidae) as a basis for selecting inhibitors. Insect Biochem Mol Biol 26:69–75CrossRefGoogle Scholar
  7. Bignell DE, Eggleton P, Nunes L, Thomas KL (1997) Termites as mediators of carbon fluxes in tropical forest budgets for carbon dioxide and methane emission. In: Watt AD, Stork NE, Hunter MD (eds) Forest and insects. Chapman and Hall Publication, London, pp 109–234Google Scholar
  8. Brauman A, Bignell DE, Tayasu I (2001) Soil feeding termites biology, microbial association and digestive mechanisms. In: Abe T, Bignell DE, Higashi M (eds) Termites evolution, sociality, symbiosis, ecology. Klower Academic publishers, Dordrecht, p 259Google Scholar
  9. Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termines. Annu Rev Entomol 39:453–487CrossRefGoogle Scholar
  10. Broderick NA, Raffa KF, Goodman RM, Handelsman J (2004) Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture independent methods. Appl Environ Microbiol 70(1):293–300CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brooks MA (1963) The microorganisms of healthy insects. In: Steinhaus EA (ed) Insect pathology- an advanced treatise. Academic, London, p 250Google Scholar
  12. Buchanon RE, Gibbons NE (1979) Bergey’s manual of determinative bacteriology, 8th edn. Williams and Wilkins, Baltimore, p 269Google Scholar
  13. Burgess NRH, McDermott SN, Whiting J (1973) Aerobic bacteria occurring in the hind-gut of the cockroach, Blatta orientalis. J Hyg 71(01):1–8CrossRefPubMedPubMedCentralGoogle Scholar
  14. Caspi-Fluger A, Inbar M, Steinberg S, Friedmann Y, Freund M, Mozes-Daube N, Zchori-Fein E (2014) Characterization of the symbiont rickettsia in the mirid bug Nesidiocoris tenuis (Reuter) (Heteroptera: Miridae). Bull Entomol Res 104(06):681–688CrossRefPubMedGoogle Scholar
  15. Chandrasekaran R, Revathi K, Nisha S, Kirubakaran SA, Sathish-Narayanan S, Senthil-Nathan S (2012) Physiological effect of chitinase purified from Bacillus subtilis against the tobacco cutworm spodoptera litura Fab. Pestic Biochem Physiol 104(1):65–71CrossRefGoogle Scholar
  16. Charalambidis ND, Foukas LC, Marmaras VJ (1996) Covalent association of lipopolysaccharide at the hemocyte surface of insects is an initial step for its internalization. Eur J Biochem 236(1):200–206CrossRefPubMedGoogle Scholar
  17. Cohen AC (2000) Feeding fitness and quality of domesticated and feral predators: effects of long-term rearing on artificial diet. Biol Control 13:49–54CrossRefGoogle Scholar
  18. Dasch GA, Weiss F, Chang KP (1984) Endosymbionts of insects. In: Krieg NR, Holt JG (eds) Bengey’s manual of systemic bacteriology. Williams and Wilkins, Baltimore, pp 811–813Google Scholar
  19. Demirci M, Sevim E, Demir I, Sevim A (2013) Culturable bacterial microbiota of Plagiodera versicolora (L.) (Coleoptera: Chrysomelidae) and virulence of the isolated strains. Folia Microbiol 58(3):201–210CrossRefGoogle Scholar
  20. Desai A, Bhamre P (2012a) Diversity of gut bacterial fauna of Oryctes monocerus L innaeus (Coleoptera: Scarabaeidae). Bionano Front 5:1–4Google Scholar
  21. Desai AE, Bhamre PR (2012b) Novel gut bacterial fauna of Gryllotalpa africana Beau. (Orthoptera: Gryllotalpidae). Int J Life Sci 6(1):50–55CrossRefGoogle Scholar
  22. Dillon RJ, Charnley AK (1986) Inhibition of Metarhizium anisopliae by the bacterial flora of the desert locust Schistocerca gergari: evidence for an antifungal toxin. J Invertebr Pathol 47:300–310CrossRefGoogle Scholar
  23. Dillon RJ, Charnley AK (1988) Inhibition of Metarhizium anisopilae by the gut bacterial flora of the desert locust- characterization of antifungal toxins. Can J Microbiol 34:1075–1082CrossRefGoogle Scholar
  24. Dillon RJ, Charnley AK (1995) Chemical barriers to gut infection in the desert locust: in vivo production of antimicrobial phenols associated with the bacterium Pantoea agglomerans. J Invertebr Pathol 66(1):72–75Google Scholar
  25. Dillon RJ, Charnley AK (1996) Colonization of the gut of germ free desert locust, Schistocerca gregaria by the bacterium Pantoea agglomerans. J Invertebr Pathol 67:11–14CrossRefGoogle Scholar
  26. Dillon R, Charnley K (2002) Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res Microbiol 153(8):503–509CrossRefPubMedGoogle Scholar
  27. Dillon RJ, Dillon VM (2004a) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49(1):71–92CrossRefPubMedGoogle Scholar
  28. Dillon RJ, Dillon VM (2004b) The gut bacteria of insects: non-pathogenic interactions. Annu Rev Entomol 49:1–16CrossRefGoogle Scholar
  29. Dillon RJ, Webster G, Weightman AJ, Charnley AK (2010) Diversity of gut microbiota increases with aging and starvation in the desert locust. Antonie Van Leeuwenhoek 97(1):69–77CrossRefPubMedGoogle Scholar
  30. Douglas AE (1992) Microbial brokers of insect-plant interactions. Proceedings of 88th international symposium on insect-plant relationships. Kluwer, Dordecht, pp 329–336Google Scholar
  31. Douglas AE (2009) The microbial dimension in insect nutritional ecology. Funct Ecol 23:38–47. doi: 10.1111/j.1365-2435.2008.01442.x CrossRefGoogle Scholar
  32. Gaugué I, Oberto J, Putzer H, Plumbridge J (2013) The use of amino sugars byBacillus subtilis : presence of a unique operon for the catabolism of glucosamine. PLoS ONE 8(5), e63025. doi: 10.1371/journal.pone.0063025 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gouveia C, Asensi MD, Zahner V, Rangel EF, de Oliveira SM (2008) Study on the bacterial midgut microbiota associated to different brazilian populations of Lutzomyia longipalpis (Lutz and Neiva) (Diptera: Psychodidae). Neotrop Entomol 37(5):597–601CrossRefPubMedGoogle Scholar
  34. Harada H, Oyaizu H, Ishikawa H (1996) A consideration about the origin of aphid intracellular symbiont in connection with gut bacterial flora. J Gen Appl Microbiol 42(1):17–26CrossRefGoogle Scholar
  35. Heimpel AM (1955) Investigations of the mode of action of strains of Bacillus cereus Fr. and Fr. pathogenic for the larch sawfly, Pristiphora erichsonii (Htg.). Can J Zool 33(4):311–326CrossRefGoogle Scholar
  36. Hunt J, Charnley AK (1981) Abundance and distribution of the gut flora of the desert locust Schistocerca gregaria. J Invertebr Pathol 38:378–385CrossRefGoogle Scholar
  37. Khan JA, Singh S (2011) Evaluation of oil degradation potential of Micrococcus varians. Int J Appl Microbiol Pharm Technol 2:75–80Google Scholar
  38. Kumari S (2014) Extracellular Protease Enzyme Production using Micrococcus luteus-4, Staphylococcus hyicus, Micrococcus luteus-1, Pasteurella pneumotrop and Micrococcus sp. isolated From Water Reservoirs. Int J Curr Microbiol Appl Sci 3(5):772–784Google Scholar
  39. Lacey LA, Unruh TR, Simkins H, Thomsen-Archer K (2007) Gut bacteria associated with the Pacific Coast wireworm, Limonius canus, inferred from 16s rDNA sequences and their implications for control. Phys Chem Chem Phys 35(5):479–489Google Scholar
  40. Lauzon CR, McCombs SD, Potter SE, Peabody NC (2009) Establishment and vertical passage of Enterobacter (Pantoea) agglomerans and Klebsiella pneumoniae through all life stages of the Mediterranean fruit fly (Diptera: Tephritidae). Ann Entomol Soc Am 102(1):85–95CrossRefGoogle Scholar
  41. Lehman RM, Lundgren JG, Petzke LM (2009) Bacterial communities associated with the digestive tract of the predatory ground beetle, Poecilus chalcites, and their modification by laboratory rearing and antibiotic treatment. Microb Ecol 57(2):349–358CrossRefPubMedGoogle Scholar
  42. Leroy PD, Sabri A, Verheggen FJ, Francis F, Thonart P, Haubruge E (2011) The semiochemically mediated interactions between bacteria and insects. Chemoecology 21(3):113–122CrossRefGoogle Scholar
  43. Lundgren JG, Weber DC (2010) Changes in digestive rate of a predatory beetle over its larval stage: implications for dietary breadth. J Insect Physiol 56(4):431–437CrossRefPubMedGoogle Scholar
  44. Lundgren JG, Lehman RM, Chee-Sanford J (2007) Bacterial communities within digestive tracts of ground beetles (Coleoptera: Carabidae). Ann Entomol Soc Am 100(2):275–282CrossRefGoogle Scholar
  45. Machtelinckx T, Van Leeuwen T, Van De Wiele T, Boon N, De Vos WH, Sanchez JA, De Clercq P (2012) Microbial community of predatory bugs of the genus Macrolophus (Hemiptera: Miridae). BMC Microbiol 12(Suppl 1):S9CrossRefPubMedPubMedCentralGoogle Scholar
  46. Margulis L, Jorgensen JZ, Dolan S, Kolchinsky R, Rainey FA, Lo SC (1998) The Arthromitus stage of Bacillus cereus: intestinal symbionts of animals. Proc Natl Acad Sci 95(3):1236–1241CrossRefPubMedPubMedCentralGoogle Scholar
  47. Mohr KI, Tebbe CC (2006) Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ Microbiol 8(2):258–272CrossRefPubMedGoogle Scholar
  48. Moran NA, Russell JA, Koga R, Fukatsu T (2005) Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Appl Environ Microbiol 71(6):3302–3310CrossRefPubMedPubMedCentralGoogle Scholar
  49. Muhammed A (1961) Studies in biosynthesis of polymetaphosphate by an enzyme from Corynebacterium xerosis. Biochim Biophys Acta 54(1):121–132CrossRefPubMedGoogle Scholar
  50. Omotayo AE, Ojo OY, Amund OO (2012) Crude oil degradation by microorganisms in soil composts. Res J Microbiol 7(4):209CrossRefGoogle Scholar
  51. Pandey N, Singh A, Rana VS, Rajagopal R (2013) Molecular characterization and analysis of bacterial diversity in Aleurocanthus woglumi (Hemiptera: Aleyrodidae). Environ Entomol 42(6):1257–1264CrossRefPubMedGoogle Scholar
  52. Prasanna VA, Kayalvizhi N, Rameshkumar N, Suganya T, Krishnan M (2014) Characterization of amylase producing Bacillus megaterium from the gut microbiota of silkworm Bombyx mori. Res J Chem Environ 18(7):38–45Google Scholar
  53. Ramesh GK, Thangamalar A, Muthuswami M, Subramanian S (2009) Characterisation of gram negative bacterial isolates from guts of few multivoltine silkworm breeds. Karnataka J Agric Sci 22(3-Spl.):517–518Google Scholar
  54. Rothrock S (1996) Food engineering’s foodmaster’97, equipment, supplies, and services 1997–1997 (Section II). Foodmaster, Radnor, p 222Google Scholar
  55. Sahayaraj K (2007) Isolation, identification and characterization of gut flora of three reduviid predators. Asian J Microbiol Biotechnol Environ Sci 9(4):1073–1075Google Scholar
  56. Senol M, Nadaroglu H, Dikbas N, Kotan R (2014) Purification of Chitinase enzymes from Bacillus subtilis bacteria TV-125, investigation of kinetic properties and antifungal activity against Fusarium culmorum. Ann Clin Microbiol Antimicrob 13(1):1–7CrossRefGoogle Scholar
  57. Shao Y, Arias-Cordero E, Guo H, Bartram S, Boland W (2014) In vivo Pyro-SIP assessing active gut microbiota of the cotton leafworm, Spodoptera littoralis. PLoS ONE 9(1):e85948. doi: 10.1371/journal.pone.0085948 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sikorowski PP (1984) Pathogens and microbiological contaminants: their occurrence and control. In: Sikorowski PP, Griffin JG, Roberson J, Lindig OH (eds) Boll weevil mass rearing technology. University Press of Mississippi, Jackson, pp 115–169Google Scholar
  59. Sikorowski PP, Goodwin RH (1985) Contaminant control and disease recognition in laboratory cultures. In: Singh P, Moore RF (eds) Handbook of insect rearing, vol I. Elsevier, New York, pp 85–105Google Scholar
  60. Singh P (1982) The rearing of beneficial insects. NZ Entomol 7(3):304–310CrossRefGoogle Scholar
  61. Spaulding AW, von Dohlen CD (1998) Phylogenetic characterization and molecular evolution of bacterial endosymbionts in psyllids (Hemiptera: Sternorrhyncha). Mol Biol Evol 15(11):1506–1513CrossRefPubMedGoogle Scholar
  62. Takatsuka J, Kunimi Y (2002) Lethal effects of Spodoptera exigua nucleopolyhedrovirus isolated in Shiga Prefecture, Japan, on larvae of the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae). Applied Entomol Zool 37(1):93–101Google Scholar
  63. Tanada Y, Kaya HK (1993) Insect pathology. Academic, London, p 276Google Scholar
  64. Thakur A, Dhammi P, Saini HS, Kaur S (2015) Pathogenicity of bacteria isolated from gut of Spodoptera litura (Lepidoptera: Noctuidae) and fitness costs of insect associated with consumption of bacteria. J Invertebr Pathol 127:38–46CrossRefPubMedGoogle Scholar
  65. Wang CT, Ji BP, Li B, Nout R, Li PL, Ji H, Chen LF (2006) Purification and characterization of a fibrinolytic enzyme of Bacillus subtilis DC33, isolated from Chinese traditional Douchi. J Ind Microbiol Biotechnol 33(9):750–758CrossRefPubMedGoogle Scholar
  66. Yaman M, Ertürk Ö, Aslan I (2010) Isolation of some pathogenic bacteria from the great spruce bark beetle, Dendroctonus micans and its specific predator, Rhizophagus grandis. Folia Microbiol 55(1):35–38CrossRefGoogle Scholar
  67. Zhang Y, Lu Z (2015) Peroxiredoxin 1 protects the pea aphid Acyrthosiphon pisum from oxidative stress induced by Micrococcus luteus infection. J Invertebr Pathol 127:115–121CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • K. Sahayaraj
    • 1
  • R. Balasubramanian
    • 2
  1. 1.St. Xavier’s College, PalayamkottaiTirunelveliIndia
  2. 2.National Institute of VirologyAlappuzhaIndia

Personalised recommendations