Advertisement

Feeding Behaviour of Reduviid Predators Against Artificial Diet

  • K. Sahayaraj
  • R. Balasubramanian
Chapter
  • 170 Downloads

Abstract

Rhynocoris marginatus has been reported as a potential predator on various economically important agricultural pests. The predator can be used as potential biocontrol agent. Rearing and mass multiplication of the reduviids in the laboratory are an important requirement for the successful biological control program. A required number of bioagents can be obtained by rearing them either on their natural host. However, rearing of this predator on natural host is entirely impracticable owing to nonavailability of host throughout the year. Preparation of oligidic diet is only an option for mass multiplication. With trial and error, several diets were prepared and tested for the feeding preference on oligidic diet using different objects like cotton, capsules, cavity slides, and foam for providing oligidic diet for different nymphal and adult stages of Rhynocoris marginatus to find suitable which among them is suitable. The results revealed that cotton has been more preferred by Rhynocoris marginatus; hence, cotton is chosen as a source material for providing oligidic diet. Feeding preference aspects like diet preference, searching behavior, sucking time, and weight gain have been considered in the laboratory using oligidic diet before continuous rearing of reduviid predators to ensure the potential of prepared oligidic diet.

Stage preference study of Rhynocoris marginatus of different life stages fed Dysdercus cingulatus, Spodoptera litura, and Corcyra cephalonica separately was carried out with experiment of choice. Artificial diet-reared Rhynocoris marginatus maximum predatory rate was observed for Spodoptera litura adult female, and it was very low in third instar Dysdercus cingulatus. In this experiment Rhynocoris marginatus nymphs and adult have the capacity to consume more number of Spodoptera litura larvae, when the predator was reared on oligidic diet. Similarly insect hosts were reared by Rhynocoris marginatus second and fifth nymphal instars and adult consumed by more number of Spodoptera litura and other life stages consumed Dysdercus cingulatus second instar. Hence this reduviid can be used as a biological control agent in crop where Spodoptera litura and Dysdercus cingulatus are present.

Keywords

Rhynocoris marginatus Meat-based artificial diet Diet ingredients Consistency Object preference Choice and non-choice test 

References

  1. Allaluya Jasmine C, Shanmuga S, Kombiah P, Kalidas S, Sahayaraj K (2012) Biosafety evaluation of Tephrosia purpurae stem-based formulation (Telp 3% EC) against three Rhynocoris spp. Asian J Biol Sci 5(4):216–220CrossRefGoogle Scholar
  2. Ambrose DP (1999) Assassin bugs. Science Publishers, EnfieldGoogle Scholar
  3. Ambrose DP, Saju T, Sahayaraj K (1990) Prey influence on the development, reproduction and size of the assassin bug Rhynocoris marginatus. Ibid. 8(1): 280–287Google Scholar
  4. Ambrose DP, Kumar SP, Nagarajan K, Das SSM, Ravichandran B (2006) Redescription, biology, lifetable, behaviour and ecotypism of Sphedanolestes minusculus Bergroth (Hemiptera : Reduviidae). Entomologia Groatia 1–2:47–66Google Scholar
  5. Avila TO, Woods HA, Raguso RA (2003) Effects of dietary variation on growth, composition, and maturation of Manduca sexta (Sphingidae: Lepidoptera). J Insect Physiol 49:293–306CrossRefGoogle Scholar
  6. Bonte M, De Clercq P (2008) Developmental and reproductive fitness of Orius laevigatus (Hemiptera: Anthocoridae) reared on factitious and artificial diets. J Econ Entomol 101:1127–1133Google Scholar
  7. Bonte M, De Clercq P (2010) Impact of artificial rearing systems on the developmental and reproductive fitness of the predatory bug, Orius laevigatus. J Insect Sci 10(1):104Google Scholar
  8. Castane C, Zapata R (2005) Rearing the predatory bug Macrolophus caliginosus on a meat-based diet. Biol Control 34:66–72CrossRefGoogle Scholar
  9. Chapman RF (1998) The insects: structure and function, 4th edn. Cambridge university press, New YorkCrossRefGoogle Scholar
  10. Cohen AC (1998) Solid-to-liquid feeding: the inside(s) story of extra-oral digestion in predaceous Arthropoda. Am Entomol 44:103–117CrossRefGoogle Scholar
  11. Cohen AC (2004) Insect diets science and technology. CRC Press, New York, p 324Google Scholar
  12. De Clercq P (2004) Culture of natural enemies on factitious foods and artificial diets. In: Capinera JL (ed) Encyclopedia of Entomology, vol I. Kluwer Academic Publishers, Dordrecht, pp 650–652Google Scholar
  13. De Clercq P, Degheele D (1992) A meat-based diet for rearing the predatory stinkbugs Podisus maculiventris and Podisus sagitta [Hetroptera : Pentatomidae]. Entomophaga 37(1):149–157CrossRefGoogle Scholar
  14. Edney EB (1977) Water balance in land arthropods. Springer-Verlag, BerlinCrossRefGoogle Scholar
  15. Grenier S, De Clercq P (2003) Comparison of artificially versus naturally reared natural enemies and their potential for use in biological control. In: van Lenteren J (ed) Quality control and production of biological control agents: theory and testing procedures. CABI Publishing, Wallingford, pp 115–131CrossRefGoogle Scholar
  16. Grenier S, Greany PD, Cohen AC (1994) Potential for mass release of insect parasitoids and predators through development of artificial culture techniques. In: Rosen D, Bennett FD, Capinera JL (eds) Pest management in the subtropics: biological control – a Florida perspective. Intercept, Andover, pp 181–205Google Scholar
  17. Grenier S, Guillaud J, Delobel B, Bonnot G (1989) Nutrition et elevage du predateur polyphage Macrolophus caliginosus (Heteroptera, Miridae) sur milieux artificiels. Entomophaga 34:77–86Google Scholar
  18. Guillermo-Ferreira R, Cardoso-Leite R, Gandolfo R (2012) First observation of alternative food usage (extrafloral nectar) by the assassin bug Atopozelus opsimus (Hemiptera: Reduviidae). Rev Bras Entomologia 56(4):489–491Google Scholar
  19. Hagler JR, Naranjo SE (2005) Use of a gut content ELISA to detect whitefly predator feeding activity after field exposure to different insecticide treatments. Biocontrol Sci Tech 15:321–339CrossRefGoogle Scholar
  20. Haviland MD (1931) The Reduviidae of Kartabo, Bartica. District, British Guiana. Zoologica 7:129–154Google Scholar
  21. Hill CJ (1989) The effect of adult diet on the biological of butterflies (The common crow butterfly). Oecologia 81(2):258–266CrossRefGoogle Scholar
  22. Holling CS (1966) The functional response of invertebrate predators of prey density. Entomol Soc Can 48:1–86Google Scholar
  23. Irudayaraj V, Martin P, Selvaraj P, Sahayaraj K (2003) Predatory behaviour of Rhynocoris marginatus on Danass chrysippus Linn. Insect Environ 8(4):146Google Scholar
  24. Karowe DN, Martin MM (1989) The effects of quantity and quality of diet nitrogen on the growth, efficiency of food utilization, nitrogen budget, and metabolic rate of fifth-instar Spodoptera eridania larvae (Lepidoptera: Noctuidae). J Insect Physiol 35:699–708CrossRefGoogle Scholar
  25. Kubota T, Shiga M (1995) Successive mass rearing of Chrysopids (Neuroptera: Chrysopidae) on eggs of Tribolium castaneum (Coleoptera: Tenebrionidae). Jpn J Appl Entomol Zool 39(1):51–58CrossRefGoogle Scholar
  26. Kumar SM, Sahayaraj K (2012) Gross morphology and histology of head and salivary apparatus of the predatory bug, Rhynocoris marginatus. J Insect Sci 11:154Google Scholar
  27. Martin MM, Vant Hof HM (1988) The cause of reduced growth of Manduca sexta larvae on a low water diet: increased metabolic processing cost or nutrient limitation. J Insect Physiol 34:515–525CrossRefGoogle Scholar
  28. McEwen PK, Kidd NA (1995) The effects of different components of an artificial food on adult green lacewing Chrysoperla carnea fecundity and longevity. Entomol Exp Appl 77(3):343–346CrossRefGoogle Scholar
  29. Nagarajan K, Ambrose DP (2013) Rhynocoris fuscipes (Fabricius) (Insecta: Heteroptera: Reduviidae) by Y-arm olfactometer. Pak J Biol Sci 16(21):1363–1367CrossRefPubMedGoogle Scholar
  30. Narbona E, Dirzo R (2010) A reassessment of the function of floral nectar in Croton suberosus (Euphorbiaceae): a reward for plant defenders and pollinators. Am J Bot 97:672–679CrossRefPubMedGoogle Scholar
  31. Norioka N, Okada T, Hamazume Y, Mega T, Ikenaka T (1984) Comparison of nutritive value of egg yolk and egg white and whole egg. J Biochem 97:19–28Google Scholar
  32. Ralston JS (1977) Egg guarding by male assassin bugs of the genus Zelus (Hemiptera: Reduviidae). Psyche 87:103–107CrossRefGoogle Scholar
  33. Sahayaraj K (2000) Evaluation of biological control potential evaluation of Rhynocoris marginatus (Fab.) on four groundnut pests under laboratory condition. Int Arachis Newsl 20(1):72–74Google Scholar
  34. Sahayaraj K (2008) Approaching behaviour of Rhynocoris marginatus (Fab.) (Heteroptera: Reduviidae) on three prey kairomones. Bull Insectol 61(2):233–237Google Scholar
  35. Sahayaraj K (2011) Hunter reduviids in pest management for plantation crop. In Proceeding of National Seminar on Harmful/Beneficial Insects of Agricultural Importance, Calicut, Kerala, India, p 42–51Google Scholar
  36. Sahayaraj K, Balasubramanian R (2008) Biological control potential evaluation of artificial and factitious diets reared Rhynocoris marginatus (Fab.) on three pest. Arch Phytopathol Plant Protect 42(3):238–247CrossRefGoogle Scholar
  37. Sahayaraj, Karthikraja S (2003) Effect of biopesticides on Rhynocoris marginatus (Fab). J Biol Control 17(1):43–45Google Scholar
  38. Sahayaraj K, Paulraj MG (1999a) Effect of plant products on the eggs of Rhynocoris marginatus (Fab.) (Hemiptera: Reduviidae). Insect Environ 5(1):23–24Google Scholar
  39. Sahayaraj K, Paulraj MG (1999b) Toxicity of some plant extracts against the life stages of a reduviid predator Rhynocoris marginatus (Fab.). Indian J Entomol 61(4):342–344Google Scholar
  40. Sahayaraj K, Paulraj MG (2001a) Effect of cold storage on egg hatching in two reduviid predators, Rhynocoris marginatus Fab. and Rhynocoris fuscipes Fab. Belgium J Entomol 3:201–207Google Scholar
  41. Sahayaraj K, Paulraj MG (2001b) Rearing and life table of reduviid predator Rhynocoris marginatus Fab. (Heteroptera : Reduviidae) on Spodoptera litura Fab. (Lepidoptera : Noctuidae) larvae. J Appl Entomol 125(6):321–325Google Scholar
  42. Sahayaraj K, Subasini M, Ravi C (2002) Influence of biorational insecticide Coleus ambonicus Lour (= aromaticus Benth) to Spodoptera litura (Fab.) (Lepidoptera: Noctuidae) and its predator Rhynocoris marginatus (Fab.) (Hemiptera: Reduviidae) in laboratory conditions. J Nat Conserv 14(1):113–122Google Scholar
  43. Sahayaraj K, Martin P, Raju G (2003) Effect of temperature and water consumption of Rhynocoris marginatus Fab. (Hemiptera: Reduviidae). Entomon 28(2):175–177Google Scholar
  44. Sahayaraj K, Thangarani S, Delma JCR (2004) Comparative prey suitability of Helicoverpa armigera and Spodoptera litura larvae for Rhynocoris marginatus (FAB.) (Heteroptera: Reduviidae). Belgium J Entomol 6:383–392Google Scholar
  45. Sahayaraj K, Martin P, Selvaraj P, Raju G (2006) Feeding behaviour of Reduviid predators on meat and insect – based artificial diets. Belgean J Entomol 8:55–65Google Scholar
  46. Sahayaraj K, Venkatesh P, Balasubramanian R (2007) Feeding behaviour and biology of a reduviid predator Rhynocoris marginatus (Fabricius) (Heteroptera: Reduviidae) on Oligidic Diet. Hexapoda 14(1):24–30Google Scholar
  47. Sahayaraj K, Borgio JAF, Kumar SM (2012) First record of Aspergillus flavus as a fungal pathogen of the predator Rhynocoris marginatus (Hemiptera: Reduviidae). Entomol Brasilis J 5(1):80–81Google Scholar
  48. Sahayaraj K, Kuumar V, Avery P (2015) Functional response of Rhynocoris kumarii (Heteroptera: Reduviidae) on Phenacoccus solenopsis (Hemiptera: Pseudococcidae) in the laboratory. Eur J Entomol 112(1):69–74Google Scholar
  49. Slansky F (1993) Nutritional ecology: the fundamental quest for nutrients. In: Stamp NE, Casey TM (eds) Caterpillars: ecological and evolutionary constraints on foraging. Chapman and Hall, New York, pp 29–91Google Scholar
  50. Stoner A, Metcalfe AM, Weeks RE (1975) Plant feeding by reduviidae, a predaceous family (Hemiptera). J Kansas Entomol Soc 48:185–188Google Scholar
  51. Sujatha S, Sahayaraj K (2007) Influence of oligidic diet and factitious host on the development, survival and adult longevity of Rhynocoris marginatus (Fabricious) (Heteroptera: Reduviidae: Harpactorinae). In: Narayann M, Sethuramalingam T, Sahayaraj K (eds) National Seminar on Technology and Management of Bioresearches, p 35–39Google Scholar
  52. Tallamy DW, Walsh E, Peck DC (2004) Revisiting paternal care in the assassin bug, Atopozelus pallens (Heteroptera: Reduviidae). J Insect Behav 17:431–436CrossRefGoogle Scholar
  53. Tan XL, Zhao J, Wang S, Zhang F (2015) Optimization and evaluation of microencapsulated artificial diet for mass rearing the predatory ladybird Propylea japonica (Coleoptera: Coccinellidae). Insect Sci 22(1):111–120CrossRefPubMedGoogle Scholar
  54. Taylor JR, Schmidt JM (1996) Factors regulating predation by first-instar spined assassin bugs (Sinea diadema (Fab.)) (Hemiptera: Reduviidae). J Insect Behav 9(1):23–35Google Scholar
  55. Tebayashi SI, Kawahara T, Kim CS, Nishi A, Takahashi K, Miyanoshita A, Horiike M (2003) Feeding stimulants eliciting the probing behavior for Peregrinator biannulipes Montrouzier et Signore (Hemiptera: Ruduviidae) from Tribolium confusum (Jacquelin du Val). Z Naturforsch C 58(3–4):295–299PubMedGoogle Scholar
  56. Thakur A, Dhammi P, Saini HS, Kaur S (2016) Effect of antibiotic on survival and development of Spodoptera litura (Lepidoptera: Noctuidae) and its gut microbial diversity. Bull Entomol Res 106(3):387–394Google Scholar
  57. Thompson SN, Hagen KS (1999) Nutrition of entomophagous insects and other arthropods. In: Bellows TS, Fisher TW (eds) Biological control: principles and applications of biological control. Academic, San Diego, pp 594–652Google Scholar
  58. Timmins WA, Bellward K, Stamp AJ, Reynolds SE (1988) Food intake, conversion efficiency, and feeding behaviour of tobacco hornworm caterpillars given artificial diet of varying nutrient and water content. Physiol Entomol 13:303–314CrossRefGoogle Scholar
  59. Vandekerkhove B, Van Baal E, Bolckmans K, De Clercq P (2006) Effect of diet and mating status on ovarian development and oviposition in the polyphagous predator Macrolophus aliginosus (Heteroptera: Miridae). Biol Control 39:532–538CrossRefGoogle Scholar
  60. Xie ZN, Wu ZX, Nettles WC, Saldang A, Andnordlundd A (1997) In vitro culture of Trichogramma spp. on artificial diets containing yeast extract and ultracentrifuged chicken egg yolk but devoid of insect components. Biol Control 8:107–110CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • K. Sahayaraj
    • 1
  • R. Balasubramanian
    • 2
  1. 1.St. Xavier’s College, PalayamkottaiTirunelveliIndia
  2. 2.National Institute of VirologyAlappuzhaIndia

Personalised recommendations