Skip to main content

Role of BMP1/Tolloid like Proteases in Bone Morphogenesis and Tissue Remodeling

  • Chapter
  • First Online:
Proteases in Physiology and Pathology

Abstract

BMP-1/ tolloid like proteases collectively referred as BTPs are members of the astacin family of metalloproteases belonging to the metzincin clan. Four members of BTP are identified in humans; BMP-1, mTLD, mTLL1 and mTLL2. The BTPs are involved in several pathophysiological diseases including bone morphogenesis, fibrosis, tissue remodeling and tumor progression. BTPs are important regulators to activate several growth factors and helps to release anti-angiogenic fragments from parent proteins. Three dimensional structure of BTPs reveal the presence of a highly unusual disulphide bridge present within the cysteine-rich loop region in the active site. The activity of BTPs is controlled mainly by activators. The only endogenous inhibitor of mammalian BTPs is α2-macroglobulin. Several small molecular inhibitors of BTPs have been reported. Further studies will help to explore the full spectrum of activities of BTPs which will help in recognition of BTPs as new targets for future therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muir A and Greenspan DS (2011) Metalloproteinases in Drosophila to humans that are central players in developmental processes. J BiolChem286:41905–41911

    Google Scholar 

  2. Sterchi EE, Stocker Wand Bond JS (2008) Meprins, membrane-bound and secreted astacin metalloproteinases. Mol Asp Med 29:309–328

    Article  CAS  Google Scholar 

  3. Takahara K, Lyons GE, Greenspan DS (1994) Bone morphogenetic protein-1 and a mammalian tolloid homologue (mTld) are encoded by alternatively spliced transcripts which are differentially expressed in some tissues. J BiolChem 269:32572–32578

    CAS  Google Scholar 

  4. Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    Article  CAS  PubMed  Google Scholar 

  5. Constam DB, Robertson EJ (1999) Regulation of bone morphogenetic protein activity by prodomains and proprotein convertases. J Cell Biol 144:139–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mac Sweeney A, Gil-Parrado S, Vinzenz D, Bernardi A, Hein A, Bodendorf U, Erbel P, Logel C, Gerhartz B (2008) Structural basis for the substrate specificity of bone morphogenetic protein 1/tolloid-like metalloproteases. J MolBiol 384:228–239

    Article  CAS  Google Scholar 

  7. Wozney JM, Rosen V, Celeste AJ et al (1988) Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1534

    Article  CAS  PubMed  Google Scholar 

  8. Vadon-Le Goff S, Hulmes DJS, Moali C (2015) BMP-1/tolloid-like proteinases synchronize matrix assembly with growth factor activation to promote morphogenesis and tissue remodeling. Matrix Biol 44–46C:14–23

    Google Scholar 

  9. Wermter C, Howel M, Hintze V, Bombosch B, Aufenvenne K, Yiallouros I et al (2007) The protease domain of procollagen C proteinase (BMP1) lacks substrate selectivity, which isconferred by non-proteolytic domains. BiolChem 388:513–521

    CAS  Google Scholar 

  10. Garrigue-Antar L, Barker C, Kadler KE (2001) Identification of amino acid residues in bone morphogenetic protein-1 important for procollagen C-proteinase activity. J Biol Chem 276:26237–26242

    Article  CAS  PubMed  Google Scholar 

  11. Gaoxiang Ge and Neung-SeonSeo et al. (2004) Bone morphogenetic protein-1/Tolloid-related metalloproteinases process Osteoglycin and enhance its ability to regulate collagen Fibrillogenesis. J Biol Chem 279:41626–41633

    Google Scholar 

  12. Kessler E (2004) Procollagen C-endopeptidase. In: Barret AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes. Elsevier Ltd, London, pp 609–617

    Chapter  Google Scholar 

  13. King GN, King N, Hughes FJ (1998) Effect of two delivery systems for recombinant human bone morphogenetic protein-2 on periodontal regeneration in vivo. J Periodontal Res 33:226–236

    Article  CAS  PubMed  Google Scholar 

  14. Gopalakrishnan B, Wang WM, Greenspan DS (2004) Biosynthetic processing of the pro- alpha1(V)pro-alpha2(V)Proalpha3(V) procollagen heterotrimer. J Biol Chem 279:30904–30912

    Article  CAS  PubMed  Google Scholar 

  15. Imamura Y, Steiglitz BM, Greenspan DS (1998) Bone morphogenetic protein-1 processes the NH2-terminal propeptide, and a furin-like proprotein convertase processes the COO terminal propeptide of pro-alpha1(V) collagen. J Biol Chem 273:27511–27517

    Article  CAS  PubMed  Google Scholar 

  16. Delolme F, Anastasi C, Alcaraz LB, Mendoza V, Vadon-Le Goff S, Talantikite M et al (2015) Proteolytic control of TGF-beta coreceptor activity by BMP-1/tolloid-like proteases revealed by quantitative iTRAQ proteomics. Cell Mol Life Sci 72:1009–1027

    Article  CAS  PubMed  Google Scholar 

  17. Lee SB, Solow-Cordero DE, Kessler E, Takahara K, Greenspan DS (1997) Transforming growth factor-beta regulation of bone morphogenetic protein-1 procollagen C-proteinase and related proteins in fibrogenic cells and keratinocytes. J Biol Chem 272:19059–19066

    Article  CAS  PubMed  Google Scholar 

  18. Tovar-Vidales T, Fitzgerald AM, Clark AF, Wordinger RJ (2013) Transforming growth factor-beta2 induces expression of biologically active bone morphogenetic protein-1 in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 54:4741–4748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ge G, Greenspan DS (2006) BMP1 controls TGFbeta1 activation via cleavage of latent TGFbeta-binding protein. J Cell Biol 175:111–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marques G, Musacchio M, Shimell MJ, Wunnenberg-Stapleton K, KWY C, O’Connor MB (1997) Production of a DPP activity gradient in the early drosophila embryo through the opposing actions of the SOG and TLD proteins. Cell 91:417–426

    Article  CAS  PubMed  Google Scholar 

  21. Piccolo S, Agius E, Lu B, Goodman S, Dale L, De Robertis EM (1997) Cleavage of chordin by xolloid metalloproteinase suggests a role for proteolytic processing in the regulation of Spemann organizer activity. Cell 91:407–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim B, Huang G, Ho WB, Greenspan DS (2011) Bone morpho- genetic protein-1 processes insulin-like growth factor- binding protein 3. J BiolChem 286:29014–29025

    CAS  Google Scholar 

  23. Ge G, Fernandez CA, Moses MA, Greenspan DS (2007) Bone morphogenetic protein 1 processes prolactin to a 17-kDa antiangiogenic factor. Proc Natl AcadSci U S A104:10010–10015

    Article  Google Scholar 

  24. Odagiri H, Kadomatsu T, Endo M, Masuda T, Morioka MS, Fukuhara S et al (2014) The secreted protein ANGPTL2 promotes metastasis of osteosarcoma cells through integrin alpha5- beta1, p38 MAPK, and matrix metalloproteinases. Sci signal 7:ra7

    Google Scholar 

  25. Reid RR, Mogford JE, Butt R, deGiorgio-Miller A, Mustoe TA (2006) Inhibition of procollagen C-proteinase reduces scar hypertrophy in a rabbit model of cutaneous scarring. Wound Repair Regen 14:138–141

    Article  PubMed  Google Scholar 

  26. Wong VW, You F, Januszyk M, Gurtner GC, Kuang AA (2014) Transcriptional profiling of rapamycin-treated fibroblasts from hypertrophic and keloid scars. Ann PlastSurg 72:711–719

    CAS  Google Scholar 

  27. MalecazeF MD, Fournie P, Tricoire C, CassagneM MM et al (2014) Upregulation of bone morphogenetic protein-1/mammalian tolloid and procollagen C-proteinase enhancer-1 in corneal scarring. Invest Ophthalmol Vis Sci 55:6712–6721

    Article  Google Scholar 

  28. Ogata I, Auster AS, Matsui A, Greenwel P, Geerts A, D'Amico T et al (1997) Up-regulation of type I procollagen Cproteinase enhancer protein messenger RNA in rats with CCl4-induced liver fibrosis. Hepatology 26:611–617

    Article  CAS  PubMed  Google Scholar 

  29. Beaumont J, Lopez B, Hermida N, Schroen B, San JG, Heymans S et al (2014) microRNA-122 down-regulation may play a role in severe myocardial fibrosis in human aortic stenosis through TGF-beta1 up-regulation. ClinSci (Lond) 126:497–506

    Article  CAS  Google Scholar 

  30. Lindahl K, Barnes AM, Fratzl-Zelman N, Whyte MP, Hefferan TE, Makareeva E et al (2011) COL1 C-propeptide cleavage site mutations cause high bone mass osteogenesis imperfecta. Hum Mutat 32:598–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Asharani PV, Keupp K, Semler O, Wang W, Li Y, Thiele H et al (2012) Attenuated BMP1 function compromises osteogenesis, leading to bone fragility in humans and zebrafish. Am J Hum Genet 90:661–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martinez-Glez V, Valencia M, Caparros-Martin JA, Aglan M, Temtamy S, Tenorio J et al (2012) Identification of a mutation causing deficient BMP1/mTLD proteolytic activity in auto- somal recessive osteogenesis imperfecta. Hum Mutat 33:343–350

    Article  CAS  PubMed  Google Scholar 

  33. Valencia M, Caparros-Martin JA, Sirerol-Piquer MS, Garcia-Verdugo JM, Martinez-Glez V, Lapunzina P et al (2014) Report of a newly indentified patient with mutations in BMP1 and underlying pathogenetic aspects. Am J Med Genet A 164A:1143–1150

    Article  PubMed  Google Scholar 

  34. Naba A, Clauser KR, Lamar JM, Carr SA, Hynes RO (2014) Extracellularmatrix signatures of humanmammary carcinoma identify novel metastasis promoters. elife 3:e01308

    Article  PubMed  PubMed Central  Google Scholar 

  35. Torres S, Bartolome RA, Mendes M, Barderas R, Fernandez-Acenero MJ, Pelaez-Garcia A et al (2013) Proteome profiling of cancer-associated fibroblasts identifies novel proinflammatory signatures and prognostic markers for colorectal cancer. Clin Cancer Res 19:6006–6019

    Article  CAS  PubMed  Google Scholar 

  36. Wu X, Liu T, Fang O, Leach LJ, Hu X, Luo Z (2014) miR-194 suppresses metastasis of non-small cell lung cancer through regulating expression of BMP1 and p27(kip1). Oncogene 33:1506–1514

    Article  CAS  PubMed  Google Scholar 

  37. Newman AC, Nakatsu MN, Chou W, Gershon PD, Hughes CC (2011) The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. MolBiol Cell 22:3791–3800

    CAS  Google Scholar 

  38. Steiglitz BM, Keene DR and Greenspan DS (2002) PCOLCE2 encodes a functional procollagen C-proteinase enhancer (PCPE2) that is a collagen-binding protein differing in distribution of expression and post-translational modifica- tion from the previously described PCPE1. J BiolChem277:49820–49830

    Google Scholar 

  39. Yamaguchi Y (2014) Periostin in skin tissue and skin-related diseases. AllergolInt 63:161–170

    CAS  Google Scholar 

  40. Huang G, Zhang Y, Kim B, Ge G, Annis DS, Mosher DF et al (2009) Fibronectin binds and enhances the activity of bone morphogenetic protein 1. J BiolChem 284:25879–25888

    Google Scholar 

  41. Inomata H, Haraguchi T, Sasai Y (2008) Robust stability of the embryonic axial pattern requires a secreted scaffold for chordin degradation. Cell 134:854–865

    Article  CAS  PubMed  Google Scholar 

  42. Leung MK, Fessler LI, Greenberg DB andFessler JH (1979) Separate amino and carboxyl procollagen peptidases in chick embryo tendon.J BiolChem254:224–232

    Google Scholar 

  43. Kessler E, Adar R, Goldberg B andNiece R (1986) Partial purification and characterization of a procollagen C-proteinase from the culture medium of mouse fibroblasts.CollRelat Res6:249–266

    Google Scholar 

  44. Allan GA, Gedge JI, Nedderman AN, Roffey SJ, Small HF, Webster R (2006) Pharmacokinetics and metabolism of UK-383,367 in rats and dogs: a rationale for long-lived plasma radioactivity. Xenobiotica 36:399–418

    Article  CAS  PubMed  Google Scholar 

  45. Robinson LA, Wilson DM, Delaet NG, Bradley EK, Dankwardt SM, Campbell JA, Martin RL, Van Wart HE, Walker KA, Sullivan RW (2003) Novel inhibitors of procollagen C-proteinase. Part 2: glutamic acid hydroxamates. Bioorg Med Chem Lett 13:2381–2384

    Article  CAS  PubMed  Google Scholar 

  46. Bijakowski C, Vadon-Le Goff S, Delolme F, Bourhis JM, Lécorché P, Ruggiero F, Becker-Pauly C, Yiallouros I, Stöcker W, Dive V, Hulmes DJS, Moali C (2012) Sizzled is unique among secreted frizzled-related proteins for its ability to specifically inhibit bone morphogenetic protein-1 (BMP-1)/tolloid-like proteinases. J BiolChem 287:33581–33593

    Google Scholar 

  47. Zhang Y, Ge G, Greenspan DS (2006) Inhibition of bone morphogenetic protein 1 by native and altered forms of alpha2-macroglobulin. J BiolChem 281:39096–39104

    CAS  Google Scholar 

  48. Hansch C, Kurup A, Garg R, Gao H (2001) Chem-bioinformatics and QSAR: a review of QSAR lacking positive hydrophobic terms. Chem Rev 101:619–672

    Article  CAS  PubMed  Google Scholar 

  49. Khazaei A, Sarmasti N, Seyf JY,Rostami Z, Zolfigol MA (2015) QSAR study of the non-peptidic inhibitors of procollagen C-proteinase based on multiple linear regression, principle component regression, and Partial Least Square Arabian J Chem

    Google Scholar 

Download references

Acknowledgement

The authors sincerely thank Dr. Indrani Sarkar of Narula Institute of Technology for her useful suggestions in preparation of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibani Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chakraborty, S., Chaudhuri, A., Bera, A.K. (2017). Role of BMP1/Tolloid like Proteases in Bone Morphogenesis and Tissue Remodeling. In: Chakraborti, S., Dhalla, N. (eds) Proteases in Physiology and Pathology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2513-6_4

Download citation

Publish with us

Policies and ethics