Skip to main content

Insect Proteases: Structural-Functional Outlook

  • Chapter
  • First Online:
Proteases in Physiology and Pathology

Abstract

Proteases perform various activation and effector functions in development, growth, and survival in insects. In this chapter, we have focused on the catalogue of insect proteases and their structural and functional aspects. We have reviewed the proteases involved in insect’s vital life processes like reproduction, development, immunity, and defence. The indispensability of seminal fluid and egg protease during fertilization highlights their evolutionary primitiveness. Furthermore, various cellular proteases like cathepsins and caspases take over the earlier one’s functions. The role of cellular proteases is well documented in the developmental process like embryogenesis, metamorphosis, moulting, and eclosion. Cellular proteases are further supported by haemolymph and digestive proteases to facilitate the growth and survival of the insect. Apart from developmental cathepsin and caspases, haemolymph contains a diverse pool of proteases that serves a pivotal role in immunity against various pathogens. Amongst various insect proteases, digestive proteases show highest structural and functional variability according to developmental stage, food content and stress level. This chapter provides an insight of structural-functional aspects of insect proteases and their role in insect physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turk B, Turk D, Turk V (2000) Lysosomal cysteine proteases: more than scavengers. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1477(1):98–111

    Article  CAS  Google Scholar 

  2. Srinivasan A, Giri AP, Gupta VS (2006) Structural and functional diversities in lepidopteran serine proteases. Cell Mol Biol Lett 11(1):132–154

    Article  CAS  PubMed  Google Scholar 

  3. Krem MM, Di Cera E (2002) Evolution of enzyme cascades from embryonic development to blood coagulation. Trends Biochem Sci 27(2):67–74

    Article  CAS  PubMed  Google Scholar 

  4. Feinstein-Rotkopf Y, Arama E (2009) Can’t live without them, can live with them: roles of caspases during vital cellular processes. Apoptosis 14(8):980–995

    Article  PubMed  Google Scholar 

  5. Cerenius L, Kawabata SI, Lee BL, Nonaka M, Söderhäll K (2010) Proteolytic cascades and their involvement in invertebrate immunity. Trends Biochem Sci 35(10):575–583

    Article  CAS  PubMed  Google Scholar 

  6. Law JH, Dunn PE, Kramer KJ (1977) Insect proteases and peptidases. Adv Enzymol Relat Areas Mol Biol 45:389–425

    CAS  PubMed  Google Scholar 

  7. Applebaum S. (1985) Biochemistry of digestion. In: Comprehensive insect physiology biochemistry and pharmacology. Pergamon Press, Oxford, pp 279–311

    Google Scholar 

  8. Terra WR, Ferreira C, Jordao BP, Dillon RJ (1996) Digestive enzymes. In: Biology of the insect midgut. Springer, Dordrecht, pp 153–194

    Google Scholar 

  9. Reeck G, Oppert B, Denton M, Kanost M, Baker J, Kramer K (1999) Insect proteinases. In: Proteases: new perspective. Birkhäuser Basel, pp 125–148

    Google Scholar 

  10. LaFlamme BA, Ram KR, Wolfner MF (2012) The Drosophila melanogaster seminal fluid protease “seminase” regulates proteolytic and postmating reproductive processes. PLoS Genet 8(1):e1002435

    Google Scholar 

  11. Nagaoka S, Kato K, Takata Y, Kamei K (2012) Identification of the sperm-activating factor initiatorin, a prostatic endopeptidase of the silkworm, Bombyx mori. Insect Biochem Mol Biol 42(8):571–582

    Google Scholar 

  12. Ram KR, Sirot LK, Wolfner MF (2006) Predicted seminal astacin-like protease is required for processing of reproductive proteins in Drosophila melanogaster. Proc Natl Acad Sci 103(49):18674–18679

    Google Scholar 

  13. Mueller JL, Page JL, Wolfner MF (2007) An ectopic expression screen reveals the protective and toxic effects of Drosophila seminal fluid proteins. Genetics 175(2):777–783

    Google Scholar 

  14. Maki N, Yamashita O (2001) The 30kP protease a responsible for 30-kDa yolk protein degradation of the silkworm, Bombyx mori: cDNA structure, developmental change and regulation by feeding. Insect Biochem Mol Biol 31(4):407–413

    Google Scholar 

  15. Kageyama T, Takahashi SY (1990) Purification and characterization of a cysteine proteinase from silkworm eggs. Eur J Biochem 193(1):203–210

    Google Scholar 

  16. Saikhedkar N, Summanwar A, Joshi R, Giri A (2015) Cathepsins of lepidopteran insects: aspects and prospects. Insect Biochem Mol Biol 64:51–59

    Google Scholar 

  17. Morisalo D, Anderson KV (1995) Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo. Annu Rev Genet 29(1):371–399

    Google Scholar 

  18. LeMosy EK, Hashimoto C (2000) The nudel protease of Drosophila is required for eggshell biogenesis in addition to embryonic patterning. Dev Biol 217(2):352–361

    Google Scholar 

  19. Tryselius Y, Hultmark D (1997) Cysteine proteinase 1 (CP1), a cathepsin L-like enzyme expressed in the Drosophila melanogaster haemocyte cell line mbn-2. Insect Mol Biol 6(2):173–181

    Google Scholar 

  20. Homma KI, Natori S (1996) Identification of substrate proteins for cathepsin L that are selectively hydrolyzed during the differentiation of imaginal discs of Sarcophaga peregrina. Eur J Biochem 240(2):443–447

    Google Scholar 

  21. Homma KI, Matsushita T, Natori S (1996) Purification, characterization, and cDNA cloning of a novel growth factor from the conditioned medium of NIH-Sape-4, an embryonic cell line of Sarcophaga peregrina (flesh fly). J Biol Chem 271(23):13770–13775

    Google Scholar 

  22. ​Wang LF, Chai LQ, He HJ, Wang Q, Wang JX, Zhao XF (2010) A cathepsin L-like proteinase is involved in moulting and metamorphosis in Helicoverpa armigera. Insect Mol Biol 19(1):99–111

    Google Scholar 

  23. Facey CO, Lockshin RA (2010) The execution phase of autophagy associated PCD during insect metamorphosis. Apoptosis 15(6):639–652

    Google Scholar 

  24. Yang XM, Hou LJ, Dong DJ, Shao HL, Wang JX, Zhao XF (2006) Cathepsin B-like proteinase is involved in the decomposition of the adult fat body of Helicoverpa armigera. Arch Insect Biochem Physiol 62(1):1–10

    Google Scholar 

  25. Wu FY, Zou FM, Jia JQ, Wang SP, Zhang GZ, Guo XJ, Gui ZZ (2011) The influence of challenge on Cathepsin B and D expression patterns in the silkworm Bombyx mori L. Int J Ind Entomol 23(1):129–135

    Google Scholar 

  26. Gui Z, Lee K, Kim B, Choi Y, Wei Y, Choo Y et al (2006) Functional role of aspartic proteinase cathepsin D in insect metamorphosis. BMC Dev Biol 6(1):1

    Google Scholar 

  27. Song KH, Jung MK, Eum JH, Hwang IC, Han SS (2008) Proteomic analysis of parasitized Plutella xylostella larvae plasma. J Insect Physiol 54(8):1271–1280

    Google Scholar 

  28. Accorsi A, Zibaee A, Malagoli D (2015) The multifaceted activity of insect caspases. J Insect Physiol 76:17–23

    Google Scholar 

  29. Nicholson DW (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6(11):1028–1042

    Google Scholar 

  30. Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15(2):81–94

    Google Scholar 

  31. Hu S, Yang X (2000) dFADD, a novel death domain-containing adapter protein for the Drosophilacaspase DREDD. J Biol Chem 275(40):30761–30764

    Google Scholar 

  32. Stöven S, Silverman N, Junell A, Hedengren-Olcott M, Erturk D, Engström Y et al (2003) Caspase-mediated processing of the Drosophila NF-κB factor relish. Proc Natl Acad Sci 100(10):5991–5996

    Google Scholar 

  33. Leulier F, Rodriguez A, Khush RS, Abrams JM, Lemaitre B (2000) The Drosophila caspase Dredd is required to resist gram-negative bacterial infection. EMBO Rep 1(4):353–358

    Google Scholar 

  34. Dorstyn L, Read S, Cakouros D, Huh JR, Hay BA, Kumar S (2002) The role of cytochrome c in caspase activation in Drosophila melanogaster cells. J Cell Biol 156(6):1089–1098

    Google Scholar 

  35. Waldhuber M, Emoto K, Petritsch C (2005) The Drosophila caspase DRONC is required for metamorphosis and cell death in response to irradiation and developmental signals. Mech Dev 122(7):914–927

    Google Scholar 

  36. Quinn LM, Dorstyn L, Mills K, Colussi PA, Chen P, Coombe M et al (2000) An essential role for the caspase dronc in developmentally programmed cell death in Drosophila. J Biol Chem 275(51):40416–40424

    Google Scholar 

  37. Chew SK, Akdemir F, Chen P, Lu WJ, Mills K, Daish T et al (2004) The apical caspase dronc governs programmed and unprogrammed cell death in Drosophila. Dev Cell 7(6):897–907

    Google Scholar 

  38. Muro I, Hay BA, Clem RJ (2002) The Drosophila DIAP1 protein is required to prevent accumulation of a continuously generated, processed form of the apical caspase DRONC. J Biol Chem 277(51):49644–49650

    Google Scholar 

  39. Cooper DM, Granville DJ, Lowenberger C (2009) The insect caspases. Apoptosis 14(3):247–256

    Google Scholar 

  40. Lee CY, Clough EA, Yellon P, Teslovich TM, Stephan DA, Baehrecke EH (2003) Genome-wide analyses of steroid- and radiation-triggered programmed cell death in Drosophila. Curr Biol 13(4):350–357

    Google Scholar 

  41. Leulier F, Ribeiro PS, Palmer E, Tenev T, Takahashi K, Robertson D et al (2006) Systematic in vivo RNAi analysis of putative components of the Drosophila cell death machinery. Cell Death Differ 13(10):1663–1674

    Google Scholar 

  42. Baum JS, Arama E, Steller H, McCall K (2007) The Drosophila caspases Strica and Dronc function redundantly in programmed cell death during oogenesis. Cell Death Differ 14(8):1508–1517

    Google Scholar 

  43. Song Z, McCall K, Steller H (1997) DCP-1, a Drosophila cell death protease essential for development. Science 275(5299):536–540

    Google Scholar 

  44. Xu D, Wang Y, Willecke R, Chen Z, Ding T, Bergmann A (2006) The effector caspases drICE and dcp-1 have partially overlapping functions in the apoptotic pathway in Drosophila. Cell Death Differ 13(10):1697–1706

    Google Scholar 

  45. Knorr E, Schmidtberg H, Vilcinskas A, Altincicek B (2009) MMPs regulate both development and immunity in the Tribolium model insect. PLoS One 4(3):e4751

    Google Scholar 

  46. Llano E, Pendás AM, Aza-Blanc P, Kornberg TB, López-Otı́n C (2000) Dm1-MMP, a matrix metalloproteinase from Drosophila with a potential role in extracellular matrix remodeling during neural development. J Biol Chem 275(46):35978–35985

    Google Scholar 

  47. Glasheen BM, Robbins RM, Piette C, Beitel GJ, Page-McCaw A (2010) A matrix metalloproteinase mediates airway remodeling in Drosophila. Dev Biol 344(2):772–783

    Google Scholar 

  48. Guha A, Lin L, Kornberg TB (2009) Regulation of Drosophila matrix metalloprotease Mmp2 is essential for wing imaginal disc: trachea association and air sac tubulogenesis. Dev Biol 335(2):317–326

    Google Scholar 

  49. Yasunaga KI, Kanamori T, Morikawa R, Suzuki E, Emoto K (2010) Dendrite reshaping of adult Drosophila sensory neurons requires matrix metalloproteinase-mediated modification of the basement membranes. Dev Cell 18(4):621–632

    Google Scholar 

  50. Llano E, Adam G, Pendás AM, Quesada V, Sánchez LM, Santamarı́a I, … López-Otı́n C (2002) Structural and enzymatic characterization of Drosophila Dm2-MMP, a membrane-bound matrix metalloproteinase with tissue-specific expression. J Biol Chem 277(26):23321–23329

    Google Scholar 

  51. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8(3):221–233

    Google Scholar 

  52. Fambrough D, Pan D, Rubin GM, Goodman CS (1996) The cell surface metalloprotease/disintegrin Kuzbanian is required for axonal extension in Drosophila. Proc Natl Acad Sci 93(23):13233–13238

    Google Scholar 

  53. Rooke J, Pan D, Xu T, Rubin GM (1996) KUZ, a conserved metalloprotease-disintegrin protein with two roles in Drosophila neurogenesis. Science 273(5279):1227–1231

    Google Scholar 

  54. Lieber T, Kidd S, Young MW (2002) Kuzbanian-mediated cleavage of Drosophila Notch. Genes Dev 16(2):209–221

    Google Scholar 

  55. Bland CE, Kimberly P, Rand MD (2003) Notch-induced proteolysis and nuclear localization of the Delta ligand. J Biol Chem 278(16):13607–13610

    Google Scholar 

  56. Delwig A, Rand MD (2008) Kuz and TACE can activate Notch independent of ligand. Cell Mol Life Sci 65(14):2232–2243

    Google Scholar 

  57. Bland ND, Pinney JW, Thomas JE, Turner AJ, Isaac RE (2008) Bioinformatic analysis of the neprilysin (M13) family of peptidases reveals complex evolutionary and functional relationships. BMC Evol Biol 8(1):1

    Google Scholar 

  58. Buchon N, Poidevin M, Kwon HM, Guillou A, Sottas V, Lee BL, Lemaitre B (2009) A single modular serine protease integrates signals from pattern-recognition receptors upstream of the Drosophila toll pathway. Proc Natl Acad Sci 106(30):12442–12447

    Google Scholar 

  59. Jiang H, Wang Y, Kanost MR (1998) Pro-phenol oxidase activating proteinase from an insect, Manduca sexta: a bacteria-inducible protein similar to Drosophila easter. Proc Natl Acad Sci 95(21):12220–12225

    Google Scholar 

  60. Jiang H, Wang Y, Yu XQ, Zhu Y, Kanost M (2003) Prophenoloxidase-activating proteinase-3 (PAP-3) from Manduca sexta hemolymph: a clip-domain serine proteinase regulated by serpin-1J and serine proteinase homologs. Insect Biochem Mol Biol 33(10):1049–1060

    Google Scholar 

  61. Satoh D, Horii A, Ochiai M, Ashida M (1999) Prophenoloxidase-activating enzyme of the silkworm, Bombyx mori. Purification, characterization, and cDNA cloning. J Biol Chem 274(11):7441–7453

    Google Scholar 

  62. Lee SY, Kwon TH, Hyun JH, Choi JS, Kawabata SI, Iwanaga S, Lee BL (1998) In vitro activation of pro-phenol-oxidase by two kinds of prophenol-oxidase-activating factors isolated from hemolymph of coleopteran, Holotrichia diomphalia larvae. Eur J Biochem 254(1):50–57

    Google Scholar 

  63. Danielli A, Loukeris TG, Lagueux M, Müller HM, Richman A, Kafatos FC (2000) A modular chitin-binding protease associated with hemocytes and hemolymph in the mosquito Anopheles gambiae. Proc Natl Acad Sci 97(13):7136–7141

    Google Scholar 

  64. Christeller JT, Laing WA, Markwick NP, Burgess EPJ (1992) Midgut protease activities in 12 phytophagous lepidopteran larvae: dietary and protease inhibitor interactions. Insect Biochem Mol Biol 22(7):735–746

    Google Scholar 

  65. Barrett AJ, Rawlings ND, Woessner JF (1998) Handbook of proteolytic enzymes. Academic Press, San Diego

    Google Scholar 

  66. Terra WR, Ferreira C (1994) Insect digestive enzymes: properties, compartmentalization and function. Comp Biochem Physiol B Comp Biochem 109(1):1–62

    Google Scholar 

  67. Garcia ES, Guimaräes JA (1979) Proteolytic enzymes in the Rhodnius prolixus midgut. Experientia 35(3):305–306

    Google Scholar 

  68. Jordão BP, Terra WR (1989) Distribution, properties, and functions of midgut carboxypeptidases and dipeptidases from Musca domestica larvae. Arch Insect Biochem Physiol 11(4):231–244

    Google Scholar 

  69. Ferreira C, Capella AN, Sitnik R, Terra WR (1994) Properties of the digestive enzymes and the permeability of the peritrophic membrane of Spodoptera frugiperda (Lepidoptera) larvae. Comp Biochem Physiol A Physiol 107(4):631–640

    Google Scholar 

  70. Swanson WJ, Clark AG, Waldrip-Dail HM, Wolfner MF, Aquadro CF (2001) Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in Drosophila. Proc Natl Acad Sci 98(13):7375–7379

    Google Scholar 

  71. Swanson WJ, Wong A, Wolfner MF, Aquadro CF (2004) Evolutionary expressed sequence tag analysis of Drosophila female reproductive tracts identifies genes subjected to positive selection. Genetics 168(3):1457–1465

    Google Scholar 

  72. Braswell WE, Andrés JA, Maroja LS, Harrison RG, Howard DJ, Swanson WJ (2006) Identification and comparative analysis of accessory gland proteins in Orthoptera. Genome 49(9):1069–1080

    Google Scholar 

  73. Sirot LK, Poulson RL, McKenna MC, Girnary H, Wolfner MF, Harrington LC (2008) Identity and transfer of male reproductive gland proteins of the dengue vector mosquito, Aedes aegypti: potential tools for control of female feeding and reproduction. Insect Biochem Mol Biol 38(2):176–189

    Google Scholar 

  74. Panhuis TM, Swanson WJ (2006) Molecular evolution and population genetic analysis of candidate female reproductive genes in Drosophila. Genetics 173(4):2039–2047

    Google Scholar 

  75. Haerty W, Jagadeeshan S, Kulathinal RJ, Wong A, Ram KR, Sirot LK et al (2007) Evolution in the fast lane: rapidly evolving sex-related genes in Drosophila. Genetics 177(3):1321–1335

    Google Scholar 

  76. Lawniczak MK, Begun DJ (2007) Molecular population genetics of female-expressed mating-induced serine proteases in Drosophila melanogaster. Mol Biol Evol 24(9):1944–1951

    Google Scholar 

  77. Findlay GD, Yi X, MacCoss MJ, Swanson WJ (2008) Proteomics reveals novel Drosophila seminal fluid proteins transferred at mating. PLoS Biol 6(7):1417–1426

    Google Scholar 

  78. Prokupek A, Hoffmann F, Eyun SI, Moriyama E, Zhou M, Harshman L (2008) An evolutionary expressed sequence tag analysis of Drosophila spermatheca genes. Evolution 62(11):2936–2947

    Google Scholar 

  79. Mueller JL, Ripoll DR, Aquadro CF, Wolfner MF (2004) Comparative structural modeling and inference of conserved protein classes in Drosophila seminal fluid. Proc Natl Acad Sci U S A 101(37):13542–13547

    Google Scholar 

  80. Kelleher ES, Watts TD, LaFlamme BA, Haynes PA, Markow TA (2009) Proteomic analysis of Drosophila mojavensis male accessory glands suggests novel classes of seminal fluid proteins. Insect Biochem Mol Biol 39(5):366–371

    Google Scholar 

  81. LaFlamme BA, Wolfner MF (2013) Identification and function of proteolysis regulators in seminal fluid. Mol Reprod Dev 80(2):80–101

    Google Scholar 

  82. Dottorini T, Nicolaides L, Ranson H, Rogers DW, Crisanti A, Catteruccia F (2007) A genome-wide analysis in Anopheles gambiae mosquitoes reveals 46 male accessory gland genes, possible modulators of female behavior. Proc Natl Acad Sci 104(41):16215–16220

    Google Scholar 

  83. Davies SJ, Chapman T (2006) Identification of genes expressed in the accessory glands of male Mediterranean fruit flies (Ceratitis capitata). Insect Biochem Mol Biol 36(11):846–856

    Google Scholar 

  84. Walters JR, Harrison RG (2008) EST analysis of male accessory glands from Heliconius butterflies with divergent mating systems. BMC Genomics 9(1):592

    Google Scholar 

  85. Walters JR, Harrison RG (2010) Combined EST and proteomic analysis identifies rapidly evolving seminal fluid proteins in Heliconius butterflies. Mol Biol Evol 27(9):2000–2013

    Google Scholar 

  86. South A, Sirot LK, Lewis SM (2011) Identification of predicted seminal fluid proteins in Tribolium castaneum. Insect Mol Biol 20(4):447–456

    Google Scholar 

  87. Andrés JA, Maroja LS, Bogdanowicz SM, Swanson WJ, Harrison RG (2006) Molecular evolution of seminal proteins in field crickets. Mol Biol Evol 23(8):1574–1584

    Google Scholar 

  88. Weiss BL, Stepczynski JM, Wong P, Kaufman WR (2002) Identification and characterization of genes differentially expressed in the testis/vas deferens of the fed male tick, Amblyomma hebraeum. Insect Biochem Mol Biol 32(7):785–793

    Google Scholar 

  89. Ram KR, Wolfner MF (2007) Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Integr Comp Biol 47(3):427–445

    Google Scholar 

  90. Ram KR, Wolfner MF (2009) A network of interactions among seminal proteins underlies the long-term postmating response in Drosophila. Proc Natl Acad Sci 106(36):15384–15389

    Google Scholar 

  91. Chapman T, Bangham J, Vinti G, Seifried B, Lung O, Wolfner MF et al (2003) The sex peptide of Drosophila melanogaster: female post-mating responses analyzed by using RNA interference. Proc Natl Acad Sci 100(17):9923–9928

    Google Scholar 

  92. Friedländer M, Jeshtadi A, Reynolds SE (2001) The structural mechanism of trypsin-induced intrinsic motility in Manduca sexta spermatozoa in vitro. J Insect Physiol 47(3):245–255

    Google Scholar 

  93. Raikhel AS, Dhadialla TS (1992) Accumulation of yolk proteins in insect oocytes. Annu Rev Entomol 37(1):217–251

    Google Scholar 

  94. Indrasith LS, Sasaki T, Yamashita O (1988) A unique protease responsible for selective degradation of a yolk protein in Bombyx mori. Purification, characterization, and cleavage profile. J Biol Chem 263(2):1045–1051

    Google Scholar 

  95. Cho WL, Deitsch KW, Raikhel AS (1991) An extraovarian protein accumulated in mosquito oocytes is a carboxypeptidase activated in embryos. Proc Natl Acad Sci 88(23):10821–10824

    Google Scholar 

  96. Medina M, Vallejo CG (1989) A serine proteinase in Drosophila embryos: yolk localization and developmental activation. Insect Biochem 19(7):687–691

    Google Scholar 

  97. Ribolla PE, De Bianchi AG (1995) Processing of procathepsin from Musca domestica eggs. Insect Biochem Mol Biol 25(9):1011–1017

    Google Scholar 

  98. LeMosy EK, Hong CC, Hashimoto C (1999) Signal transduction by a protease cascade. Trends Cell Biol 9(3):102–107

    Google Scholar 

  99. Moussian B, Roth S (2005) Dorsoventral axis formation in the Drosophila embryo—shaping and transducing a morphogen gradient. Curr Biol 15(21):R887–R899

    Google Scholar 

  100. Smith CL, Delotto R (1992) A common domain within the proenzyme regions of the Drosophila snake and easter proteins and Tachypleus proclotting enzyme defines a new subfamily of serine proteases. Protein Sci 1(9):1225–1226

    Google Scholar 

  101. Turcotte CL, Hashimoto C (2002) Evidence for a glycosaminoglycan on the nudel protein important for dorsoventral patterning of the Drosophila embryo. Dev Dyn 224(1):51–57

    Google Scholar 

  102. Hong CC, Hashimoto C (1995) An unusual mosaic protein with a protease domain, encoded by the nudeI gene, is involved in defining embryonic dorsoventral polarity in Drosophila. Cell 82(5):785–794

    Google Scholar 

  103. LeMosy EK, Tan YQ, Hashimoto C (2001) Activation of a protease cascade involved in patterning the Drosophila embryo. Proc Natl Acad Sci 98(9):5055–5060

    Google Scholar 

  104. Dissing M, Giordano H, DeLotto R (2001) Autoproteolysis and feedback in a protease cascade directing Drosophila dorsal–ventral cell fate. EMBO J 20(10):2387–2393

    Google Scholar 

  105. Hegedus D, O’grady M, Chamankhah M, Baldwin D, Gleddie S, Braun L, Erlandson M (2002) Changes in cysteine protease activity and localization during midgut metamorphosis in the crucifer root maggot (Delia radicum). Insect Biochem Mol Biol 32(11):1585–1596

    Google Scholar 

  106. Serbielle C, Moreau S, Veillard F, Voldoire E, Bézier A, Mannucci MA et al (2009) Identification of parasite-responsive cysteine proteases in Manduca sexta. Biol Chem 390(5/6):493–502

    Google Scholar 

  107. Byeon JH, Seo ES, Lee JB, Lee MJ, Kim JK, Yoo JW et al (2015) A specific cathepsin-L-like protease purified from an insect midgut shows antibacterial activity against gut symbiotic bacteria. Dev Comp Immunol 53(1):79–84

    Google Scholar 

  108. Kim BY, Lee KS, Sohn MR, Kim KY, Choi KH, Kang PD, Jin BR (2011) Bombyx mori cathepsin D expression is induced by high temperature and H 2 O 2 exposure. J Asia Pac Entomol 14(3):285–288

    Google Scholar 

  109. Ge ZY, Wan PJ, Li GQ, Xia YG, Han ZJ (2014) Characterization of cysteine protease-like genes in the striped rice stem borer, Chilo suppressalis. Genome 57(2):79–88

    Google Scholar 

  110. Harvey NL, Daish T, Mills K, Dorstyn L, Quinn LM, Read SH et al (2001) Characterization of the DrosophilaCaspase, DAMM. J Biol Chem 276(27):25342–25350

    Google Scholar 

  111. Courtiade J, Pauchet Y, Vogel H, Heckel DG (2011) A comprehensive characterization of the caspase gene family in insects from the order Lepidoptera. BMC Genomics 12(1):357

    Google Scholar 

  112. Bryant B, Blair CD, Olson KE, Clem RJ (2008) Annotation and expression profiling of apoptosis-related genes in the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 38(3):331–345

    Google Scholar 

  113. Page‐McCaw A, Serano J, Santé JM, Rubin GM (2003) Drosophila matrix metalloproteinases are required for tissue remodeling, but not embryonic development. Dev Cell 4(1):95–106

    Google Scholar 

  114. Sotillos S, Roch F, Campuzano S (1997) The metalloprotease‐disintegrin Kuzbanian participates in Notch activation during growth and patterning of Drosophila imaginal discs. Development 124(23):4769–4779

    Google Scholar 

  115. Jang IH, Chosa N, Kim SH, Nam HJ, Lemaitre B, Ochiai M et al (2006) A Spätzle‐processing enzyme required for toll signaling activation in Drosophila innate immunity. Dev Cell 10(1):45–55

    Google Scholar 

  116. Jiang H, Wang Y, Gu Y, Guo X, Zou Z, Scholz F et al (2005) Molecular identification of a bevy of serine proteinases in Manduca sexta hemolymph. Insect Biochem Mol Biol 35(8):931–943

    Google Scholar 

  117. Ward CW (1975) Properties and specificity of the major anionic trypsin‐like enzyme in the keratinolytic larvae of the webbing clothes moth. Biochimica et Biophysica Acta (BBA)‐Enzymology 391(1):201–211

    Google Scholar 

  118. Lam W, Coast GM, Rayne RC (2000) Characterisation of multiple trypsins from the midgut of Locusta migratoria. Insect Biochem Mol Biol 30(1):85–94

    Google Scholar 

  119. Lopes AR, Juliano MA, Marana SR, Juliano L, Terra WR (2006) Substrate specificity of insect trypsins and the role of their subsites in catalysis. Insect Biochem Mol Biol 36(2):130–140

    Google Scholar 

  120. Gilbert LI (2012) Insect molecular biology and biochemistry. Academic Press

    Google Scholar 

  121. Christeller JT, Laing WA, Shaw BD, Burgess EPJ (1990) Characterization and partial purification of the digestive proteases of the black field cricket, Teleogryllus commodus (Walker): elastase is a major component. Insect Biochemistry 20(2):157–164

    Google Scholar 

  122. Valaitis AP (1995) Gypsy moth midgut proteinases: purification and characterization of luminal trypsin, elastase and the brush border membrane leucine aminopeptidase. Insect Biochem Mol Biol 25(1):139–149

    Google Scholar 

  123. Whitworth ST, Kordula, T.,&Travis J. (1999) Molecular cloning of Soli E2: an esterase‐like serine proteinase from the imported fire ant (Solenopsis invicta). Insect Biochem Mol Biol 29:249–254

    Google Scholar 

  124. Zeng F, Cohen AC (2001) Induction of elastase in a zoophytophagous heteropteran, Lygus hesperus (Hemiptera: Miridae). Ann Entomol Soc Am 94(1):146–151

    Google Scholar 

  125. Padilha MH, Pimentel AC, Ribeiro AF, Terra WR (2009) Sequence and function of lysosomal and digestive cathepsin D‐like proteinases of Musca domestica midgut. Insect Biochem Mol Biol 39(11):782–791

    Google Scholar 

  126. Terra WR, Ferreira C, De Bianchi AG (1979) Distribution of digestive enzymes among the endo‐and ectoperitrophic spaces and midgut cells of Rhynchosciara and its physiological significance. J Insect Physiol 25(6):487–494

    Google Scholar 

  127. Ferreira C, Terra WR (1985) Minor aminopeptidases purified from the plasma membrane of midgut caeca cells of an insect (Rhynchosciara americana) larva. Insect Biochem 15(5):619–625

    Google Scholar 

  128. Vonk HJ, Western JRH (1984) Comparative biochemistry and physiology of enzymatic digestion. Academic Press

    Google Scholar 

  129. Houseman JG, Campbell FC, Morrison PE (1987) A preliminary characterization of digestive proteases in the posterior midgut of the stable fly Stomoxys calcitrans (L.)(Diptera: Muscidae). Insect Biochem 17(1):213–218

    Google Scholar 

  130. Gooding RH, Rolseth BM (1976) Digestive processes of haematophagous insects. XI. Partial purification and some properties of six proteolytic enzymes from the tsetse fly Glossina morsitans morsitans Westwood (Diptera: Glossinidae). Can J Zool 54(11):1950–1959

    Google Scholar 

  131. Houseman JG, Downe AER (1981) Exoproteinase activity in the posterior midgut of Rhodnius prolixus Stål (Hemiptera: Reduviidae). Insect Biochem 11(5):579–582

    Google Scholar 

  132. ​Klinkowstrom AM, Terra WR, Ferreira C (1995) Midgut dipeptidases from 36 Rhynchosciara americana (diptera) larvae. Properties of soluble and membrane‐ bound forms. Insect Biochem Mol Biol 25(3):303–310

    Google Scholar 

Download references

Acknowledgements

Funding under the Divisional Research and Development Program (DRDP) to the Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India, is greatly acknowledged. Dr. Sneha acknowledges the Royal Society, UK, for its financial support under the Newton International Fellowship scheme. Editorial assistance by Mr. Aniruddha Agnihotri and Ms. Shriya Lele is highly acknowledged. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Jagdale, S., Bansode, S., Joshi, R. (2017). Insect Proteases: Structural-Functional Outlook. In: Chakraborti, S., Dhalla, N. (eds) Proteases in Physiology and Pathology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2513-6_21

Download citation

Publish with us

Policies and ethics