Skip to main content

The Role of Matrix Metalloproteinase-2 and Metalloproteinase-9 in Embryonic Neural Crest Cells and Their Derivatives

  • Chapter
  • First Online:
Proteases in Physiology and Pathology

Abstract

Neural crest cells (NCCs) are transient cell populations that are initially residing at the dorsal-most part of the neural tube of the developing vertebrate embryo. At well-defined time points, NCCs detach from the neural tube as they undergo epithelial-to-mesenchymal transition (EMT) and migrate in distinct pathways to their final destinations. There, this unique cell population differentiates into a great variety of cell types including bone and cartilage tissues of the head and face, connective tissue of the heart, skin melanocytes, adipocytes, enteric neurons, and most of the peripheral sensory neurons, glia, and Schwann cells. Matrix metalloproteinases (MMPs) are a large family of matrix-degrading enzymes, which are divided into several subfamilies according to their structure and substrate specificity. The gelatinases subfamily, which includes MMP-2 and MMP-9 solely, is the most investigated group. Both MMP-2 and MMP-9 were previously reported to be expressed in embryonic NCCs and to have a role in their EMT and migration processes. In this review we present the most recent data regarding the role of MMP-2 and MMP-9 in embryonic NCCs and in their various derivatives in later embryonic stages and in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gammill LS, Bronner-Fraser M (2003) Neural crest specification: migrating into genomics. Nat Rev Neurosci 4:795–805

    Article  CAS  PubMed  Google Scholar 

  2. Le Douarin N, Kalcheim C (1999) The neural crest

    Google Scholar 

  3. Morales AV, Barbas JA, Nieto MA (2005) How to become neural crest: from segregation to delamination. Semin Cell Dev Biol 16:655–662

    Article  CAS  PubMed  Google Scholar 

  4. Le Lièvre CS, Le Douarin NM (1975) Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol 34:125–154

    PubMed  Google Scholar 

  5. Kirby ML, Waldo KL (1995) Neural crest and cardiovascular patterning. Circ Res 77:211–215

    Article  CAS  PubMed  Google Scholar 

  6. Gross JB, Hanken J (2008) Review of fate-mapping studies of osteogenic cranial neural crest in vertebrates. Dev Biol 317:389–400

    Article  CAS  PubMed  Google Scholar 

  7. McBratney-Owen B, Iseki S, Bamforth SD et al (2008) Development and tissue origins of the mammalian cranial base. Dev Biol 322:121–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Noden DM (1983) The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev Biol 96:144–165

    Article  CAS  PubMed  Google Scholar 

  9. Trainor PA (2010) Craniofacial birth defects: the role of neural crest cells in the etiology and pathogenesis of Treacher Collins syndrome and the potential for prevention. Am J Med Genet Part A 152(A):2984–2994

    Article  Google Scholar 

  10. Bar A, Shoval I, Monsonego-ornan E, Sela-donenfeld D (2014) Role of proteases in cellular dysfunction. 103–126

    Google Scholar 

  11. Ciccarone V, Spengler BA, Meyers MB et al (1989) Phenotypic diversification in human neuroblastoma cells: expression of distinct neural crest lineages. Cancer Res 49:219–225

    CAS  PubMed  Google Scholar 

  12. Kulesa PM, Kasemeier-Kulesa JC, Teddy JM et al (2006) Reprogramming metastatic melanoma cells to assume a neural crest cell-like phenotype in an embryonic microenvironment. Proc Natl Acad Sci U S A 103:3752–3757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thiery JP, Acloque H, Huang RYJ, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  CAS  PubMed  Google Scholar 

  14. Kalluri R, Weinberg RA (2009) Review series the basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kerosuo L, Bronner-fraser M (2013) in Neural Crest. Development 23:320–332

    Google Scholar 

  16. Acloque H, Adams MS, Fishwick K et al (2009) Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 119:1438–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barembaum M, Bronner-Fraser M (2005) Early steps in neural crest specification. Semin Cell Dev Biol 16:642–646

    Article  CAS  PubMed  Google Scholar 

  18. Kerosuo L, Bronner-Fraser M (2012) What is bad in cancer is good in the embryo: importance of EMT in neural crest development. Semin Cell Dev Biol 23:320–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Trainor PA (2005) Specification of neural crest cell formation and migration in mouse embryos. Semin Cell Dev Biol 16:683–693

    Article  CAS  PubMed  Google Scholar 

  20. Ulmer B, Hagenlocher C, Schmalholz S et al (2013) Calponin 2 acts as an effector of noncanonical Wnt-mediated cell polarization during neural crest cell migration. Cell Rep 3:615–621

    Article  CAS  PubMed  Google Scholar 

  21. Shoval I, Kalcheim C (2012) Antagonistic activities of Rho and Rac GTPases underlie the transition from neural crest delamination to migration. Dev Dyn 241:1155–1168

    Article  CAS  PubMed  Google Scholar 

  22. Groysman M, Shoval I, Kalcheim C (2008) A negative modulatory role for Rho and Rho-associated kinase signaling in delamination of neural crest cells. Neural Dev 3:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sakai D, Wakamatsu Y (2005) Regulatory mechanisms for neural crest formation. Cells Tissues Organs 179:24–35

    Article  PubMed  Google Scholar 

  24. Burstyn-Cohen T, Stanleigh J, Sela-Donenfeld D, Kalcheim C (2004) Canonical Wnt activity regulates trunk neural crest delamination linking BMP/noggin signaling with G1/S transition. Development 131:5327–5339

    Article  CAS  PubMed  Google Scholar 

  25. García-Castro MI, Marcelle C, Bronner-Fraser M (2002) Ectodermal Wnt function as a neural crest inducer. Science 297:848–851

    PubMed  Google Scholar 

  26. Sauka-Spengler T, Bronner-Fraser M (2008) A gene regulatory network orchestrates neural crest formation. Nat Rev Mol Cell Biol 9:557–568

    Article  CAS  PubMed  Google Scholar 

  27. Sela-Donenfeld D, Kalcheim C (1999) Regulation of the onset of neural crest migration by coordinated activity of BMP4 and Noggin in the dorsal neural tube. Development 126:4749–4762

    CAS  PubMed  Google Scholar 

  28. Steventon B, Carmona-Fontaine C, Mayor R (2005) Genetic network during neural crest induction: from cell specification to cell survival. Semin Cell Dev Biol 16:647–654

    Article  CAS  PubMed  Google Scholar 

  29. Takashi S, Daisuke S, Noriko O et al (2006) Sox genes regulate type 2 collagen expression in avian neural crest cells. Develop Growth Differ 48:477–486

    Article  Google Scholar 

  30. Sakai D, Suzuki T, Osumi N, Wakamatsu Y (2006) Cooperative action of Sox9, Snail2 and PKA signaling in early neural crest development. Development 133:1323–1333

    Article  CAS  PubMed  Google Scholar 

  31. Clark I, Swingler T, Sampieri C, Edwards D (2008) The regulation of matrix metalloproteinases and their inhibitors. Int J Biochem Cell Biol 40:1362–1378

    Article  CAS  PubMed  Google Scholar 

  32. Mannello F, Medda V (2012) Nuclear localization of matrix metalloproteinases. Prog Histochem Cytochem 47:27–58

    Article  PubMed  Google Scholar 

  33. Sternlicht M, Werb Z (2009) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Biol 17:463–516

    Article  Google Scholar 

  34. Vu TH, Werb Z (2000) Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 14:2123–2133

    Article  CAS  PubMed  Google Scholar 

  35. Mannello F, Gazzanelli G (2001) Tissue inhibitors of metalloproteinases and programmed cell death: conundrums, controversies and potential implications. Apoptosis 6:479–482

    Article  CAS  PubMed  Google Scholar 

  36. Arbeláez LF, Bergmann U, Tuuttila A et al (1997) Interaction of matrix metalloproteinases-2 and -9 with pregnancy zone protein and alpha2-macroglobulin. Arch Biochem Biophys 347:62–68

    Article  PubMed  Google Scholar 

  37. Sottrup-Jensen L, Birkedal-Hansen H (1989) Human fibroblast collagenase-a-macroglobulin interactions. J Biol Chem 264:393–401

    CAS  PubMed  Google Scholar 

  38. Pires I, Gomes J, Prada J et al (2013) MMP-2 and MMP-9 expression in canine cutaneous melanocytic tumours: evidence of a relationship with tumoural malignancy. Recent Adv Biol Ther Manag Melanoma:133–161

    Google Scholar 

  39. Zimowska M, Swierczynska M, Ciemerych M a. (2013) Nuclear MMP-9 role in the regulation of rat skeletal myoblasts proliferation. Biol Cell 105:334–344

    Article  CAS  PubMed  Google Scholar 

  40. Eguchi T, Kubota S, Kawata K et al (2008) Novel transcription-factor-like function of human matrix metalloproteinase 3 regulating the CTGF/CCN2 gene. Mol Cell Biol 28:2391–2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Malemud CJ (2006) Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci 11:1696–1701

    Article  CAS  PubMed  Google Scholar 

  42. Szabo KA, Ablin RJ, Singh G (2004) Matrix metalloproteinases and the immune response. Clin Appl Immunol Rev 4:295–319

    Article  CAS  Google Scholar 

  43. Biljana E, Boris V, Cena D, Veleska-stefkovska D (2011) Matrix metalloproteinases (with accent to collagenases). J Cell Anim Biol 5:113–120

    CAS  Google Scholar 

  44. Stamenkovic I (2003) Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol 200:448–464

    Article  CAS  PubMed  Google Scholar 

  45. Quigley JP (1995) Matrix metalloproteinase-2 is an interstitial collagenase. J Biol Chem 270:5872–5876

    Article  PubMed  Google Scholar 

  46. Werb Z (1998) Chin J. Extracellular Matrix Remodeling during Morphogenesis 857:110–118

    CAS  Google Scholar 

  47. Duong TD, Erickson C a. (2004) MMP-2 plays an essential role in producing epithelial-mesenchymal transformations in the avian embryo. Dev Dyn 229:42–53

    Article  CAS  PubMed  Google Scholar 

  48. Monsonego-Ornan E, Kosonovsky J, Bar A et al (2012) Matrix metalloproteinase 9/gelatinase B is required for neural crest cell migration. Dev Biol 364:162–177

    Article  CAS  PubMed  Google Scholar 

  49. Taneyhill LA (2008) To adhere or not to adhere. Cell Adhes Migr 2:223–230

    Article  Google Scholar 

  50. Shoval I, Ludwig A, Kalcheim C (2007) Antagonistic roles of full-length N-cadherin and its soluble BMP cleavage product in neural crest delamination. Development 134:491–501

    Article  CAS  PubMed  Google Scholar 

  51. Zhang J, Bai S, Zhang X et al (2003) The expression of gelatinase a (MMP-2) is required for normal development of zebrafish embryos. Dev Genes Evol 213:456–463

    Article  CAS  PubMed  Google Scholar 

  52. Keow JY, Pond ED, Cisar JS et al (2012) Activity-based labeling of matrix metalloproteinases in living vertebrate embryos. PLoS One 7:1–10

    Article  CAS  Google Scholar 

  53. Yoong S, O’Connell B, Soanes A et al (2007) Characterization of the zebrafish matrix metalloproteinase 9 gene and its developmental expression pattern. Gene Expr Patterns 7:39–46

    Article  CAS  PubMed  Google Scholar 

  54. Minoux M, Rijli FM (2010) Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development 137:2605–2621

    Article  CAS  PubMed  Google Scholar 

  55. Trainor PA, Tam PP (1995) Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches. Development 121:2569–2582

    CAS  PubMed  Google Scholar 

  56. Morrison SJ, Perez SE, Qiao Z et al (2000) Transient notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101:499–510

    Article  CAS  PubMed  Google Scholar 

  57. Shah NM, Marchionni MA, Isaacs I et al (1994) Glial growth-factor restricts mammalian neural crest stem-cells to a glial fate. Cell 77:349–360

    Article  CAS  PubMed  Google Scholar 

  58. Rijli FM, Mark M, Lakkaraju S et al (1993) A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell 75:1333–1349

    Article  CAS  PubMed  Google Scholar 

  59. Trainor PA, Krumlauf R (2001) Hox genes, neural crest cells and branchial arch patterning. Curr Opin Cell Biol 13:698–705

    Article  CAS  PubMed  Google Scholar 

  60. Gendron-Maguire M, Mallo M, Zhang M, Gridley T (1993) Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell 75:1317–1331

    Article  CAS  PubMed  Google Scholar 

  61. Dixon J, Dixon J, Trainor P et al (2007) Treacher Collins syndrome. Orthod Craniofac Res 10:88–95

    Article  PubMed  Google Scholar 

  62. Dixon J, Jones NC, Sandell LL et al (2006) Tcof1/treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proc Natl Acad Sci U S A 103:13403–13408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Valdez BC, Henning D, So RB et al (2004) The Treacher Collins syndrome (TCOF1) gene product is involved in ribosomal DNA gene transcription by interacting with upstream binding factor. Proc Natl Acad Sci U S A 101:10709–10714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jones NC, Lynn ML, Gaudenz K et al (2008) Prevention of the neurocristopathy {Treacher} {Collins} syndrome through inhibition of p53 function. Nat Med 14:125–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gkantidis N, Blumer S, Katsaros C et al (2012) Site-specific expression of Gelatinolytic activity during morphogenesis of the secondary palate in the mouse embryo. PLoS One 7:1–14

    Article  CAS  Google Scholar 

  66. Chin JR, Werb Z (1997) Matrix metalloproteinases regulate morphogenesis, migration and remodeling of epithelium, tongue skeletal muscle and cartilage in the mandibular arch. Development 124:1519–1530

    CAS  PubMed  Google Scholar 

  67. Johnston MC, Bronsky PT (1991) Animal models for human craniofacial malformations. J Craniofac Genet Dev Biol 11:277–291

    CAS  PubMed  Google Scholar 

  68. Mossey PA, Little J, Munger RG et al (2009) Cleft lip and palate. Lancet 374:1773–1785

    Article  PubMed  Google Scholar 

  69. Satokata I, Maas R (1994) Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet 6:348–356

    Article  CAS  PubMed  Google Scholar 

  70. Metzis V, Courtney AD, Kerr MC et al (2013) Patched1 is required in neural crest cells for the prevention of orofacial clefts. Hum Mol Genet 22:5026–5035

    Article  CAS  PubMed  Google Scholar 

  71. Simsa S, Hasdai A, Dan H, Ornan EM (2007) Differential regulation of MMPs and matrix assembly in chicken and turkey growth-plate chondrocytes. Am J Physiol Regul Integr Comp Physiol 292:R2216–R2224

    Article  CAS  PubMed  Google Scholar 

  72. Tong A, Reich A, Genin O, Pines M (2003) Expression of chicken 75-kDa gelatinase B-like enzyme in perivascular chondrocytes suggests its role in vascularization of the growth plate. 18:1443–1452

    Google Scholar 

  73. Miettinen PJ, Chin JR, Shum L et al (1999) Epidermal growth factor receptor function is necessary for normal craniofacial development and palate closure. Nat Genet 22:69–73

    Article  CAS  PubMed  Google Scholar 

  74. Shimo T, Kanyama M, Wu C et al (2004) Expression and roles of connective tissue growth factor in Meckel’s cartilage development. Dev Dyn 231:136–147

    Article  CAS  PubMed  Google Scholar 

  75. Randall LE, Hall RC (2002) Temperospatial expression of matrix metalloproteinases 1, 2, 3, and 9 during early tooth development. Connect Tissue Res 43:205–211

    Article  CAS  PubMed  Google Scholar 

  76. Vu TH, Shipley JM, Bergers G et al (1998) MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93:411–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Itoh T, Ikeda T, Gomi H et al (1997) Unaltered secretion of β-amyloid precursor protein in gelatinase a (matrix metalloproteinase 2)-deficient mice. J Biol Chem 272:22389–22392

    Article  CAS  PubMed  Google Scholar 

  78. Mosig RA, Dowling O, DiFeo A et al (2007) Loss of MMP-2 disrupts skeletal and craniofacial development and results in decreased bone mineralization, joint erosion and defects in osteoblast and osteoclast growth. Hum Mol Genet 16:1113–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Martignetti JA, Aqeel AA, Sewairi WA et al (2001) Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome. Nat Genet 28:261–265

    Article  CAS  PubMed  Google Scholar 

  80. Hillegass JM, Villano CM, Cooper KR, White LA (2008) Glucocorticoids alter craniofacial development and increase expression and activity of matrix metalloproteinases in developing Zebrafish (Danio rerio). Toxicol Sci 102:413–424

    Article  CAS  PubMed  Google Scholar 

  81. Abbott BD (1995) Review of the interaction between TCDD and glucocorticoids in embryonic palate. Toxicology 105:365–373

    Article  CAS  PubMed  Google Scholar 

  82. Waldo K, Zdanowicz M, Burch J et al (1999) A novel role for cardiac neural crest in heart development. J Clin Invest 103:1499–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kirby ML, Waldo KL (1990) Role of neural crest in congenital heart disease. Circulation 82:332–340

    Article  CAS  PubMed  Google Scholar 

  84. Creazzo TL, Godt RE, Leatherbury L et al (1998) Role of cardiac neural crest cells in cardiovascular development. Annu Rev Physiol 60:267–286

    Article  CAS  PubMed  Google Scholar 

  85. Stoller JZ, Epstein JA (2005) Cardiac neural crest. Semin Cell Dev Biol 16:704–715

    Article  CAS  PubMed  Google Scholar 

  86. Jiang X, Rowitch DH, Soriano P et al (2000) Fate of the mammalian cardiac neural crest. Development 127:1607–1616

    CAS  PubMed  Google Scholar 

  87. Kirby ML, Turnage KL, Hays BM (1985) Characterization of conotruncal malformations following ablation of “cardiac” neural crest. Anat Rec 213:87–93

    Article  CAS  PubMed  Google Scholar 

  88. Nakamura T, Colbert MC, Robbins J (2006) Neural crest cells retain multipotential characteristics in the developing valves and label the cardiac conduction system. Circ Res 98:1547–1554

    Article  CAS  PubMed  Google Scholar 

  89. Hutson MR, Kirby ML (2007) Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations. Semin Cell Dev Biol 18:101–110

    Article  CAS  PubMed  Google Scholar 

  90. Sato M, Yost HJ (2003) Cardiac neural crest contributes to cardiomyogenesis in zebrafish. Dev Biol 257:127–139

    Article  CAS  PubMed  Google Scholar 

  91. Alexander SM, Jackson KJ, Bushnell KM, McGuire PG (1997) Spatial and temporal expression of the 72-kDa type IV collagenase (MMP-8) correlates with development and differentiation of valves in the embryonic avian heart. Dev Dyn 209:261–268

    Article  CAS  PubMed  Google Scholar 

  92. Cai DH, Vollberg TM Sr, Hahn-Dantona E et al (2000) MMP-2 expression during early avian cardiac and neural crest morphogenesis. Anat Rec 259:168–179

    Article  CAS  PubMed  Google Scholar 

  93. Robbins JR, McGuire PG, Wehrle-Haller B, Rogers SL (1999) Diminished matrix metalloproteinase 2 (MMP-2) in Ectomesenchyme-derived tissues of the patch mutant mouse: regulation of MMP-2 by PDGF and effects on mesenchymal cell migration. Dev Biol 212:255–263

    Article  CAS  PubMed  Google Scholar 

  94. Cai DH, Brauer PR (2002) Synthetic matrix metalloproteinase inhibitor decreases early cardiac neural crest migration in chicken embryos. Dev Dyn 224:441–449

    Article  CAS  PubMed  Google Scholar 

  95. Nitzan E, Krispin S, Pfaltzgraff ER et al (2013) A dynamic code of dorsal neural tube genes regulates the segregation between neurogenic and melanogenic neural crest cells. Development 140:2269–2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Erickson CA, Goins TL (1995) Avian neural crest cells can migrate in the dorsolateral path only if they are specified as melanocytes. Development 121:915–924

    CAS  PubMed  Google Scholar 

  97. Thomas AJ, Erickson CA (2008) The making of a melanocyte: the specification of melanoblasts from the neural crest. Pigment Cell Melanoma Res 21:598–610

    Article  CAS  PubMed  Google Scholar 

  98. Krispin S, Nitzan E, Kassem Y, Kalcheim C (2010) Evidence for a dynamic spatiotemporal fate map and early fate restrictions of premigratory avian neural crest. Development 137:585–595

    Article  CAS  PubMed  Google Scholar 

  99. Simões-Costa M, Bronner ME (2015) Establishing neural crest identity: a gene regulatory recipe. Development 142:242–257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Tomlinson ML, Guan P, Morris RJ et al (2009) A chemical genomic approach identifies matrix metalloproteinases as playing an essential and specific role in Xenopus Melanophore migration. Chem Biol 16:93–104

    Article  CAS  PubMed  Google Scholar 

  101. Simonetti O, Lucarini G, Brancorsini D et al (2002) Immunohistochemical expression of vascular endothelial growth factor, matrix metalloproteinase 2, and matrix metalloproteinase 9 in cutaneous melanocytic lesions. Cancer 95:1963–1970

    Article  CAS  PubMed  Google Scholar 

  102. van den Oord JJ, Paemen L, Opdenakker G, de Wolf-Peeters C (1997) Expression of gelatinase B and the extracellular matrix metalloproteinase inducer EMMPRIN in benign and malignant pigment cell lesions of the skin. Am J Pathol 151:665–670

    PubMed  PubMed Central  Google Scholar 

  103. MacDougall JR, Bani MR, Lin Y, Muschel RJ, Kerbel RS (1999) “Proteolytic switching”: opposite patterns of regulation of gelatinase B and its inhibitor TIMP-1 during human melanoma progression and consequences of gelatinase B overexpression. Br J Cancer 80:504–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Redondo P, Lloret P, Idoate M, Inoges S (2005) Expression and serum levels of MMP-2 and MMP-9 during human melanoma progression. Clin Exp Dermatol 30:541–545

    Article  CAS  PubMed  Google Scholar 

  105. Hofmann UB, Westphal JR, Waas ET et al (1999) Matrix metalloproteinases in human melanoma cell lines and xenografts: increased expression of activated matrix metalloproteinase-2 (MMP-2) correlates with melanoma progression. Br J Cancer 81:774–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen Y, Chen Y, Huang L, Yu J (2012) Evaluation of heparanase and matrix metalloproteinase-9 in patients with cutaneous malignant melanoma. J Dermatol 39:339–343

    Article  CAS  PubMed  Google Scholar 

  107. Billon N, Iannarelli P, Monteiro MC et al (2007) The generation of adipocytes by the neural crest. Development 134:2283–2292

    Article  CAS  PubMed  Google Scholar 

  108. Bouloumié A, Sengenès C, Portolan G et al (2001) Adipocyte produces matrix metalloproteinases 2 and 9 involvement in adipose differentiation. Diabetes 50:2080–2086

    Article  PubMed  Google Scholar 

  109. O’Hara A, Lim FL, Mazzatti DJ, Trayhurn P (2009) Microarray analysis identifies matrix metalloproteinases (MMPs) as key genes whose expression is up-regulated in human adipocytes by macrophage-conditioned medium. Pflugers Arch Eur J Physiol 458:1103–1114

    Article  CAS  Google Scholar 

  110. Bauters D, Scroyen I, Van Hul M, Lijnen HR (2015) Gelatinase A (MMP-2) promotes murine adipogenesis. Biochim Biophys Acta - Gen Subj 1850:1449–1456

    Article  CAS  Google Scholar 

  111. Christensen S, Purslow PP (2016) The role of matrix metalloproteinases in muscle and adipose tissue development and meat quality: a review. Meat Sci 119:138–146

    Article  CAS  PubMed  Google Scholar 

  112. Ailhaud G, Grimaldi P, Négrel R (1992) Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr 12:207–233

    Article  CAS  PubMed  Google Scholar 

  113. Wang QA, Tao C, Gupta RK, Scherer PE (2013) Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 19:1338–1344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Sang QX (1998) Complex role of matrix metalloproteinases in angiogenesis. Cell Res 8:171–177

    Article  CAS  PubMed  Google Scholar 

  115. Nagase H, Woessner JF (1999) Matrix Metalloproteinases. Am Soc Biochem Mol Biol 274(3):21491–21494

    CAS  Google Scholar 

  116. Gonzalez-Villasana V, Fuentes-Mattei E, Ivan C et al (2015) Rac1/Pak1/p38/MMP-2 axis regulates angiogenesis in ovarian cancer. Clin Cancer Res 21:2127–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Van Hul M, Lijnen HR (2008) A functional role of gelatinase A in the development of nutritionally induced obesity in mice. J Thromb Haemost 6:1198–1206

    Article  PubMed  CAS  Google Scholar 

  118. Chun TH, Hotary KB, Sabeh F et al (2006) A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125:577–591

    Article  CAS  PubMed  Google Scholar 

  119. Van Hul M, Lupu F, Dresselaers T et al (2012) Matrix metalloproteinase inhibition affects adipose tissue mass in obese mice. Clin Exp Pharmacol Physiol 39:544–550

    Article  PubMed  CAS  Google Scholar 

  120. Scroyen I, Cosemans L, Lijnen HR (2009) Effect of tissue inhibitor of matrix metalloproteinases-1 on in vitro and in vivo adipocyte differentiation. Thromb Res 124:578–583

    Article  CAS  PubMed  Google Scholar 

  121. Goldstein AM, Hofstra RMW, Burns AJ (2013) Building a brain in the gut: development of the enteric nervous system. Clin Genet 83:307–316

    Article  CAS  PubMed  Google Scholar 

  122. Sasselli V, Pachnis V, Burns AJ (2012) The enteric nervous system. Dev Biol 366:64–73

    Article  CAS  PubMed  Google Scholar 

  123. Yntema CL, Hammond WS (1954) The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J Comp Neurol 101:515–541

    Article  CAS  PubMed  Google Scholar 

  124. Le Douarin NM, Teillet MA (1973) The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol 30:31–48

    PubMed  Google Scholar 

  125. Anderson RB, Stewart AL, Young HM (2006) Phenotypes of neural-crest-derived cells in vagal and sacral pathways. Cell Tissue Res 323:11–25

    Article  CAS  PubMed  Google Scholar 

  126. Wang X, Chan AKK, Sham MH et al (2011) Analysis of the sacral neural crest cell contribution to the hindgut enteric nervous system in the mouse embryo. Gastroenterology 141:992–1002

    Google Scholar 

  127. Nataf V, Lecoin L, Eichmann A, Le Douarin NM (1996) Endothelin-B receptor is expressed by neural crest cells in the avian embryo. Proc Natl Acad Sci U S A 93:9645–9650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pattyn A, Morin X, Cremer H et al (1999) The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399:366–370

    Article  CAS  PubMed  Google Scholar 

  129. Young HM, Hearn CJ, Ciampoli D et al (1998) A single rostrocaudal colonization of the rodent intestine by enteric neuron precursors is revealed by the expression of Phox2b, Ret, and p75 and by explants grown under the kidney capsule or in organ culture. Dev Biol 202:67–84

    Article  CAS  PubMed  Google Scholar 

  130. Kenny SE, Tam PKH, Garcia-Barcelo M (2010) Hirschsprung’s disease. Semin Pediatr Surg 19:194–200

    Article  PubMed  Google Scholar 

  131. Amiel J, Sproat-Emison E, Garcia-Barcelo M et al (2008) Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet 45:1–14

    Article  CAS  PubMed  Google Scholar 

  132. Anderson RB, Turner KN, Nikonenko AG et al (2006) The cell adhesion molecule L1 is required for chain migration of neural crest cells in the developing mouse gut. Gastroenterology 130:1221–1232

    Article  CAS  PubMed  Google Scholar 

  133. Ayer-Le Lievre CS, Le Douarin NM (1982) The early development of cranial sensory ganglia and the potentialities of their component cells studied in quail-chick chimeras. Dev Biol 94:291–310

    Article  CAS  PubMed  Google Scholar 

  134. Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6:671–682

    Article  CAS  PubMed  Google Scholar 

  135. Le Douarin N, Dulac C, Dupin E, Cameron-Curry P (1991) Glial cell lineages in the neural crest. Glia 4:175–184

    Article  PubMed  Google Scholar 

  136. Mirsky R, Jessen KR (1999) The neurobiology of Schwann cells. Brain Pathol 9:293–311

    Article  CAS  PubMed  Google Scholar 

  137. Asundi VK, Erdman R, Stahl RC, Carey DJ (2003) Matrix metalloproteinase-dependent shedding of syndecan-3, a transmembrane heparan sulfate proteoglycan, in Schwann cells. J Neurosci Res 73:593–602

    Article  CAS  PubMed  Google Scholar 

  138. Yamada T, Miyazaki K, Koshikawa N et al (1995) Selective localization of gelatinase A, an enzyme degrading β-amyloid protein, in white matter microglia and in Schwann cells. Acta Neuropathol 89:199–203

    Article  CAS  PubMed  Google Scholar 

  139. Ferguson TA, Muir D (2000) MMP-2 and MMP-9 increase the neurite-promoting potential of schwann cell basal laminae and are upregulated in degenerated nerve. Mol Cell Neurosci 16:157–167

    Article  CAS  PubMed  Google Scholar 

  140. Kobayashi H, Chattopadhyay S, Kato K et al (2008) MMPs initiate Schwann cell-mediated MBP degradation and mechanical nociception after nerve damage. Mol Cell Neurosci 39:619–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ramos-desimone N, Hahn-dantona E, Sipley J et al (1999) Activation of Matrix Metalloproteinase-9 ( MMP-9 ) via a converging plasmin/Stromelysin-1 cascade enhances tumor cell invasion. Biochemistry 274:13066–13076

    CAS  Google Scholar 

  142. Rosenberg GA, Cunningham LA, Wallace J et al (2001) Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res 893:104–112

    Article  CAS  PubMed  Google Scholar 

  143. Hasebe T, Hartman R, Fu L et al (2007) Evidence for a cooperative role of gelatinase A and membrane type-1 matrix metalloproteinase during Xenopus laevis development. Mech Dev 124:11–22

    Article  CAS  PubMed  Google Scholar 

  144. Itoh Y, Seiki M (2006) MT1-MMP: a potent modifier of pericellular microenvironment. J Cell Physiol 206:1–8

    Article  CAS  PubMed  Google Scholar 

  145. Walsh LA, Cooper CA, Damjanovski S (2007) Soluble membrane-type 3 matrix metalloproteinase causes changes in gene expression and increased gelatinase activity during Xenopus laevis development. Int J Dev Biol 51:389–395

    Article  CAS  PubMed  Google Scholar 

  146. Zhao H, Bernardo MM, Osenkowski P et al (2004) Differential inhibition of membrane type 3 (MT3)-matrix metalloproteinase (MMP) and MT1-MMP by tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-3 regulates pro-MMP-2 activation. J Biol Chem 279:8592–8601

    Article  CAS  PubMed  Google Scholar 

  147. Jalali S, Singh S, Agnihotri S et al (2015) A role for matrix remodelling proteins in invasive and malignant meningiomas. Neuropathol Appl Neurobiol 41:16–28

    Article  CAS  Google Scholar 

  148. Toth M, Chvyrkova I, Bernardo MM et al (2003) Pro-MMP-9 activation by the MT1-MMP/MMP-2 axis and MMP-3: role of TIMP-2 and plasma membranes. Biochem Biophys Res Commun 308:386–395

    Article  CAS  PubMed  Google Scholar 

  149. Fridman R, Toth M, Pena D, Mobashery S (1995) Activation of progelatinase B (MMP-9) by gelatinase A (MMP-2). Cancer Res 55:2548–2555

    CAS  PubMed  Google Scholar 

  150. Dreier R, Grässel S, Fuchs S et al (2004) Pro-MMP-9 is a specific macrophage product and is activated by osteoarthritic chondrocytes via MMP-3 or a MT1-MMP/MMP-13 cascade. Exp Cell Res 297:303–312

    Article  CAS  PubMed  Google Scholar 

  151. Knäuper V, Smith B, Lopez-Otin C, Murphy G (1997) Activation of progelatinase B (proMMP-9) by active collagenase-3 (MMP-13). Eur J Biochem 248:369–373

    Article  PubMed  Google Scholar 

  152. Sang Q, Birkedal-hansen H, Van Wart HE (1995) Proteolytic and non-proteolytic activation of human neutrophil progelatinase B. BBA 1251:99–108

    Google Scholar 

  153. Nakamura H, Fujii Y, Ohuchi E et al (1998) Activation of the precursor of human stromelysin 2 and its interactions with other matrix metalloproteinases. Eur J Biochem 253:67–75

    Article  CAS  PubMed  Google Scholar 

  154. Uria JA, Lopez-Otin C (2000) Matrilysin-2, a new matrix metalloproteinase expressed in human tumors and showing the minimal domain organization required for secretion, latency, and activity. Cancer Res 60:4745–4751

    CAS  PubMed  Google Scholar 

  155. Harrison M, Abu-Elmagd M, Grocott T et al (2004) Matrix metalloproteinase genes in Xenopus development. Dev Dyn 231:214–220

    Article  CAS  PubMed  Google Scholar 

  156. Roth L, Kalev-Altman R, Monsonego-Ornan E, Sela-Donenfeld D (2017) A new role of the membrane-type matrix metalloproteinase 16 (MMP16/MT3-MMP) in neural crest cell migration. Int J Dev Biol 61(3–4–5):245–256

    Google Scholar 

  157. Holmbeck K, Bianco P, Caterina J et al (1999) MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99(1):81–92

    Google Scholar 

  158. Shi J, Son MY, Yamada S et al (2008) Membrane-type MMPs enable extracellular matrix permissiveness and mesenchymal cell proliferation during embryogenesis. Dev Biol 313(1):196–209

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Efrat Monsonego-Ornan or Dalit Sela-Donenfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kalev-Altman, R., Monsonego-Ornan, E., Sela-Donenfeld, D. (2017). The Role of Matrix Metalloproteinase-2 and Metalloproteinase-9 in Embryonic Neural Crest Cells and Their Derivatives. In: Chakraborti, S., Dhalla, N. (eds) Proteases in Physiology and Pathology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2513-6_2

Download citation

Publish with us

Policies and ethics