Skip to main content

Proteases and Protease Inhibitors in Male Reproduction

  • Chapter
  • First Online:
Proteases in Physiology and Pathology

Abstract

From the development of the spermatozoa within the seminiferous tubule of testis to the fertilization events that occur in female reproductive tract, all the reproductive processes in mammals are regulated by a highly orchestrated and integrative mechanism. Several proteases and their protease inhibitors form an important part of this mechanism. So far, vast arrays of proteases have been identified in the reproductive system of mammals playing critical role in the major events associated with the several male reproductive processes. Several endogenous inhibitors of these proteases are also produced in the male reproductive tissues/fluids that cater to the role of regulating the protease production/degradation, activation/inactivation, etc. Thus, there exist a fine balance between the production of these proteases and their regulators for maintaining the blood-testes barrier and the gamete development. A disturbance in this equilibrium leads to progression of reproductive failures including azoospermia, impaired sperm functions, low fertilizing efficiency, etc. and culminates in infertility cases. This chapter focuses on an account of such proteases and the protease inhibitors with their role in mammalian male reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hulboy DL, Rudolph LA, Matrisian LM (1997) Matrix metallo-proteinases as mediators of reproductive function. Mol Hum Reprod 3:27–45

    Article  CAS  PubMed  Google Scholar 

  2. Polgar L (1989) Mechanisms of protease action. CRC Press, Boca Raton, FL

    Google Scholar 

  3. Fowlkes JL, Winkler MK (2002) Exploring the interface between metallo-proteinase activity and growth factor and cytokine bioavailability. Cytokine Growth Factor Rev 13:277–287

    Article  CAS  PubMed  Google Scholar 

  4. Nagase H, Woessne JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21499

    Article  CAS  PubMed  Google Scholar 

  5. Choi H, Jin S, Kwon JT, Kim J, Jeong J, Kim J et al (2016) Characterization of mammalian ADAM2 and its absence from human sperm. PLoS One 11:e0158321. doi:10.1371/journal. pone.0158321

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Le Magueresse-Battistoni B (2000) Proteases and their cognate inhibitors of the serine and metalloprotease subclasses in testicular physiology. In: Madame curie bioscience database [internet] Austin (TX) Landes Bioscience; 2000–2013. Source: http://wwwncbinlmnihgov/books/NBK6476

    Google Scholar 

  7. Puente XS, López-Otín C (2004) A genomic analysis of rat proteases and protease inhibitors. Genome Res 14:609–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Domsalla A, Melzig MF (2008) Occurrence and properties of proteases in plant lattices. Planta Med 74:699–711

    Article  CAS  PubMed  Google Scholar 

  9. Chapman HA, Riese RJ, Shi GP (1997) Emerging roles for cysteine proteases in human biology. Annu Rev Physiol 59:63–88

    Article  CAS  PubMed  Google Scholar 

  10. Rojas FJ (1999) Calpain-calpastatin: a novel, complete calcium-dependent protease system in human spermatozoa. Mol Hum Reprod 5:520–526

    Article  CAS  PubMed  Google Scholar 

  11. Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, Turk D (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta 1824:68–88

    Article  CAS  PubMed  Google Scholar 

  12. Heutinck KM, ten Berge IJM, Hack CE, Hamann J, Rowshani AT (2010) Serine proteases of the human immune system in health and disease. Mol Immunol 47:1943–1955

    Article  CAS  PubMed  Google Scholar 

  13. Dano K, Andreasen PA, GrondahlHansen J (1985) Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res 44:139–266

    Article  CAS  PubMed  Google Scholar 

  14. Mazzieri R, Masiero L, Zanetta L (1997) Control of type IV collagenase activity by components of the urokinaseplasmin system: a regulatory mechanism with cell-bound reactants. EMBO J 16:2319–2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Karakosta TD, Soosaipillai A, Diamandis EP, Batruch I, Drabovich AP (2016) Quantification of human kallikrein-related peptidases in biological fluids by multi-platform targeted mass spectrometry assays. Mol Cell Proteomics. doi:10.1074/mcp.M115.057695

  16. Tranter R, Read JA, Jones R, Brady RL (2000) Effector sites in the three-dimensional structure of mammalian sperm β-acrosin. Structure 8:1179–1188

    Article  CAS  PubMed  Google Scholar 

  17. Bedford JM (1998) Mammalian fertilization misread? Sperm penetration of the eutherian zona pellucida is unlikely to be a lytic event. Biol Reprod 59:1275–1287. doi:10.1095/​biolreprod59.6.1275

    Article  CAS  PubMed  Google Scholar 

  18. De los Reyes M, Barros C (2000) Immunolocalization of proacrosin/ acrosin in bovine sperm and sperm penetration through the zona pellucida. Anim Reprod Sci 58:215-228

    Google Scholar 

  19. Woessner JF (1991) Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 5:2145–2154

    CAS  PubMed  Google Scholar 

  20. Tentes I, Asimakopoulos B, Mourvati E, Diedrich K, Al-Hasani S, Nikolettos N (2007) Matrix metalloproteinase (MMP)-2 and MMP-9 in seminal plasma. J Assist Reprod Gen 24:278–281

    Article  Google Scholar 

  21. Kazal LA, Spicer DS, Brahinsky RA (1948) Isolation of a crystalline trypsin inhibitor-anticoagulant protein from pancreas. J Am Chem Soc 70:3034–3040

    Article  CAS  PubMed  Google Scholar 

  22. Van Hoef V, Breugelmans B, Spit J, Simonet G, Zels S, Vanden Broeck J (2013) Phylogenetic distribution of protease inhibitors of the Kazal-family within the arthropoda. Peptides 41:59–65

    Article  PubMed  CAS  Google Scholar 

  23. Ma L, Yu H, Ni Z, Hu S, Ma W, Chu C, Zhang Y (2013) SPINK13, an epididymis-specific gene of the Kazal-type serine protease inhibitor (SPINK) family, is essential for the acrosomal integrity and male fertility. J Biol Chem 288:10154–10165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu SM, Lu W, Qasim MA, Anderson S et al (2001) Predicting the reactivity of proteins from their sequence alone Kazal family of protein inhibitors of serine proteinases. Proc Natl Acad Sci 98:1410–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stenman UH (2011) Role of the tumor-associated trypsin inhibitor SPINK1 in cancer development. Asian J Androl 13:628–629

    Article  PubMed  PubMed Central  Google Scholar 

  26. Austin CR (1951) Observations on the penetration of sperm into the mammalian egg. Aust J Sci Res 4:581–596

    CAS  Google Scholar 

  27. Austin CR (1952) The “capacitation” of the mammalian sperm. Nature 170:326

    Article  CAS  PubMed  Google Scholar 

  28. Chang MC (1951) Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 168:697–698

    Article  CAS  PubMed  Google Scholar 

  29. Chang MC (1955) Development of fertilizing capacity of rabbit spermatozoa in the uterus. Nature 175:1036–1037

    Article  CAS  PubMed  Google Scholar 

  30. Yanagimachi R (1969) In vitro acrosome reaction and capacitation of golden hamster spermatozoa, bovine follicular fluid and its fractions. J Exp Zool 179:269–280

    Article  Google Scholar 

  31. Yanagimachi R (1994) Mammalian fertilization. In: Knobil E, Neill JD (eds) The physiology of reproduction. Raven Press, New York, pp 189–317

    Google Scholar 

  32. Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clake P, Kopf GS (1995) Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 121:1129–1137

    CAS  PubMed  Google Scholar 

  33. Zheng X, Geiger M, Ecke S, Bielek E, Donner P, Eberspacher U, Schleuning WD, Binder BR (1994) Inhibition of acrosin by protein C inhibitor and localization of protein C inhibitor to spermatozoa. Am J Phys 267:C466–C472

    CAS  Google Scholar 

  34. Rudolph-Owen LA, Cannon P, Matrisian LM (1998) Overexpression of the matrix metalloproteinase matrilysin results in premature mammary gland differentiation and male infertility. Mol Biol Cell 9:421–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guyot R, Magre S, Leduque P (2003) Differential expression of tissue inhibitor of metalloproteinases type 1 (TIMP-1) during mouse gonad development. Dev Dyn 227:357–366

    Article  CAS  PubMed  Google Scholar 

  36. Cossins J, Dudgeon TJ, Catlin G (1996) Identification of MMP18, a putative novel human matrix metalloproteinase. Biochem Biophys Res Commun 228:494–498

    Article  CAS  PubMed  Google Scholar 

  37. Velasco G, Pendas AM, Fueyo A (1999) Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J Biol Chem 274:4570–4576

    Article  CAS  PubMed  Google Scholar 

  38. Lohi J, Wilson CL, Roby JD (2001) Epilysin, a novel human matrix metalloproteinase (MMP-28) expressed in testis and keratinocytes and in response to injury. J Biol Chem 276:10134–10144

    Article  CAS  PubMed  Google Scholar 

  39. Nuttall RK, Sampieri CL, Pennington CJ (2004) Expression analysis of the entire MMP and IMP gene families during mouse tissue development. FEBS Lett 563:129–134

    Article  CAS  PubMed  Google Scholar 

  40. Shimokawa K, Katayama M, Matsuda Y, Takahashi H, Hara I, Sato H (2002) Matrix metalloproteinase (MMP)-2 and MMP-9 activities in human seminal plasma. Mol Hum Reprod 8:32–36

    Article  CAS  Google Scholar 

  41. Saengsoi W, Shia WY, Shyu CL, Wu JT, Warinrak C, Lee WM, Cheng FP (2011) Detection of matrix metalloproteinase (MMP)- 2 and MMP-9 in canine seminal plasma. Anim Reprod Sci 127:114–119

    Article  CAS  PubMed  Google Scholar 

  42. Warinrak C, Wu J, Hsu W, Liao J, Chang S, Cheng F (2014) Expression of matrix metalloproteinases (MMP-2, MMP-9) and their inhibitors (TIMP-1, TIMP-2) in canine testis, epididymis and semen. Reprod Domest Anim 50:48–57

    Article  PubMed  CAS  Google Scholar 

  43. Ferrer M, Rodriguez H, Zara L, Yu Y, Xu W, Oko R (2012) MMP2 and acrosin are major proteinases associated with the inner acrosomal membrane and may cooperate in sperm penetration of the zona pellucida during fertilization. Cell Tissue Res 349:881–895. doi:10.1007/s00441-012-1429-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Metayer S, Dacheux F, Dacheux JL, Gatti JL (2002) Comparison, characterization and identification of protease inhibitors in epididymal fluids of domestic mammals. Matrix metalloproteinases are major fluid gelatinases. Biol Reprod 66:1219–1229

    Article  CAS  PubMed  Google Scholar 

  45. Kotlowska M, Kowalski R, Glogowski J, Jankowski J, Ciereszko A (2005) Gelatinases and serine proteinase inhibitors of seminal plasma and the reproductive tract of turkey (Meleagris gallopavo). Theriogenology 63:1667–1681

    Article  CAS  PubMed  Google Scholar 

  46. Gurupriya VS, Divyashree BC, Roy SC (2014) Cryogenic changes in proteases and antiprotease activities of buffalo (Bubalus bubalis) and cattle (Bos taurus) semen. Theriogenology 81:396–402

    Article  CAS  PubMed  Google Scholar 

  47. Urbschat A, Paulus P, Wiegratz I, Beschmann H, Hadji P, Hofmann R, Ochsendorf F (2014) Macrophage metalloelastase-12 is detectable in human seminal plasma and represents a predictor for inflammatory processes in the male genital tract. Andrologia 47:153–159

    Article  PubMed  CAS  Google Scholar 

  48. Aydos SE, Yukselten Y, Sunguroglu A, Demircan K, Aydos K (2016) Role of ADAMTS1 and ADAMTS5 in male infertility. Andrologia. doi:10.1111/and.12547

  49. Li SW, Arita M, Fertala A, Bao Y, Kopen GC, Långsjö TK et al (2001) Transgenic mice with inactive alleles for procollagen Nproteinase (ADAMTS-2) develop fragile skin and male sterility. Biochem J 355:271–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu L, Smith JW (2000) Identification of ADAM 31: a protein expressed in leydig cells and specialized epithelia. Endocrinology 141:2033–2042

    Article  CAS  PubMed  Google Scholar 

  51. Porter S, Clark IM, Kevorkian L (2005) The ADAMTS metalloproteinases. Biochem J 386:15–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dun MD, Anderson AL, Bromfield EG, Asquith KL, Emmett B, McLaughlin EA, Nixon B (2012) Investigation of the expression and functional significance of the novel mouse sperm protein, a disintegrin and metalloprotease with thrombospondin type 1 motifs number 10 (ADAMTS10). Int J Androl 35:572–589

    Article  CAS  PubMed  Google Scholar 

  53. Carre GA, Couty I, Hennequet-Antier C, Govoroun MS (2011) Gene expression profiling reveals new potential players of gonad differentiation in the chicken embryo. PLoS One 6:e23959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Abdul-Majeed S, Mell B, Nauli SM, Joe B (2014) Cryptorchidism and infertility in rats with targeted disruption of the Adamts16 locus. PLoS One 9:e100967

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Llamazares M, Cal S, Quesada V, Lopez-Otin C (2003) Identification and characterization of ADAMTS-20 defines a novel subfamily of metalloproteinases-disintegrins with multiple thrombospondin-1 repeats and a unique GON domain. J Biol Chem 278:13382–13389

    Article  CAS  PubMed  Google Scholar 

  56. Liu Y, Zan L, Zhao S, Xin Y, Jiao Y, Li K (2012) Molecular characterization, expression pattern, polymorphism and association analysis of bovine ADAMTSL3 gene. Mol Biol Rep 39:1551–1560

    Article  CAS  PubMed  Google Scholar 

  57. Zaneveld LJD, De Jonge CJ (1991) Mammalian sperm acrosomal enzymes and the acrosome reaction. In: Dunbar BS, O’Rand MG (eds) A comparative overview of mammalian fertilization. Plenum Press, New York, pp 63–79

    Chapter  Google Scholar 

  58. Zervos IA, Lavrentiadou SN, Tsantarliotou MP, Georgiadis MP, Kokolis NA, Taitzoglou IA (2010) Seasonal variation of plasminogen activator activity in spermatozoa and seminal plasma of boar, buck, bull and stallion. Reprod Dom Anim 45:e440–e446. doi:10.1111/j.1439-0531.2010.01597.x

    Article  CAS  Google Scholar 

  59. Zhang T, Guo CX, Hu ZY, Liu YX (1997a) Localization of plasminogen activator and inhibitor, LH and androgen receptors and inhibin subunits in monkey epididymis. Mol Hum Reprod 3:945–952

    Article  CAS  PubMed  Google Scholar 

  60. Reese JH, McNeal JE, Redwine EA, Stamey TA, Freiha FS (1988) Tissue type plasminogen activator as a marker for functional zones, within the human prostate gland. Prostate 12:47–53

    Article  CAS  PubMed  Google Scholar 

  61. Zhang T, Zhou HM, Liu YX (1997b) Expression of plasminogen activator and inhibitor, urokinase receptor and inhibin subunits in rhesus monkey testes. Mol Hum Reprod 3:223–231

    Article  CAS  PubMed  Google Scholar 

  62. Liu YX (2007) Involvement of plasminogen activator and plasminogen activator inhibitor type 1 in spermatogenesis, sperm capacitation, and fertilization. Semin Thromb Hemost 33:29–40

    Article  PubMed  CAS  Google Scholar 

  63. Ebisch I, Steegers-Theunissen R, Sweep F, Zielhuis G, Geurts- Moespot A, Thomas C (2007) Possible role of the plasminogen activation system in human subfertility. Fertil Steril 87: 619–626

    Google Scholar 

  64. Le Magueresse-Battistoni B (2007) Serine proteases and serine protease inhibitors in testicular physiology: the plasminogen activation system. Reproduction 134:721–729

    Article  PubMed  CAS  Google Scholar 

  65. Liu K, Liu YX, Qun D, Zhou HM, Lin X, Hu ZY (1996) Preliminary studies on the role of plasminogen activator in seminal plasma of human and rhesus monkey. Mol Hum Reprod 2:99–104

    Article  CAS  PubMed  Google Scholar 

  66. Huarte J, Belin D, Bosco D, Sappino AP, Vassalli JD (1987) Plasminogen activator and mouse spermatozoa: urokinase synthesis in the male genital tract and binding of the enzyme to the sperm cell surface. J Cell Biol 104:1281–1289

    Article  CAS  PubMed  Google Scholar 

  67. Tulsiani DR, NagDas SK, Skudlarek MD, Orgebin-Crist MC (1995) Rat sperm plasma membrane mannosidase: localization and evidence for proteolytic processing during epididymal maturation. Dev Biol 167:584–597

    Article  CAS  PubMed  Google Scholar 

  68. Lacroix M, Smith FE, Fritz IB (1977) Secretion of plasminogen activator by sertoli cell enriched cultures. Mol Cell Endocrinol 9:227–236

    Article  CAS  PubMed  Google Scholar 

  69. Schill WB (1975) Significance of proteolytic sperm enzymes for the fertility. Hautarzt Oct 26:514–523

    CAS  Google Scholar 

  70. Matsui H, Takahashi T (2001) Mouse testicular leydig cells express Klk21, a tissue kallikrein that cleaves fibronectin and IGF-binding protein-3. Endocrinology 142:4918–4929

    Article  CAS  PubMed  Google Scholar 

  71. Yousef GM, Diamandis EP (2001) The new human tissue kallikrein gene family: structure, function, and association to disease. Endocr Rev 22:184–204

    CAS  PubMed  Google Scholar 

  72. Emami N, Diamandis EP (2008) Human kallikrein-related peptidase 14 (KLK14) is a new activator component of the KLK proteolytic cascade. Possible function in seminal plasma and skin J Biol Chem 283:3031–3041

    CAS  PubMed  Google Scholar 

  73. Richardson RT, Sivashanmugam P, Hall SH, Hamil KG, Moore PA (2001) Cloning and sequencing of human Eppin: a novel family of protease inhibitors expressed in the epididymis and testis. Gene 270:93–102

    Article  CAS  PubMed  Google Scholar 

  74. Wang Z, Widgren EE, Sivashanmugam P, O’Rand MG, Richardson RT (2005) Association of eppin with semenogelin on human spermatozoa. Biol Reprod 72:1064–1070

    Article  CAS  PubMed  Google Scholar 

  75. Sivashanmugam P, Hall SH, Hamil KG, French FS, O’Rand MG, Richardson RT (2003) Characterization of mouse Eppin and a gene cluster of similar protease inhibitors on mouse chromosome 2. Gene 312:125–134

    Article  CAS  PubMed  Google Scholar 

  76. Wang ZJ, Zhang W, Feng NH, Song NH, Wu HF (2008) Molecular mechanism of epididymal protease inhibitor modulating the liquefaction of human semen. Asian J Androl 10:770–775

    Article  PubMed  CAS  Google Scholar 

  77. Chhikara N, Saraswat M, Tomar AK, Dey S, Singh S, Yadav S (2012) Human epididymis protein4 (HE4): a novel cross class protease inhibitor. PLoS ONE 7:E47672E47672

    Google Scholar 

  78. Klemm U, MuÈller-Esterl W, Engel W (1991b) Acrosin, the peculiar sperm-specific serine protease. Hum Genet 87:635–641

    Article  CAS  PubMed  Google Scholar 

  79. Kremling H, Flake A, Adham IM, Radtke J, Engel W (1991a) Exon intron structure and nucleotide sequence of the rat proacrosin gene. DNA Seq 2:57–60

    Article  CAS  PubMed  Google Scholar 

  80. Adham IM, Szpirer C, Kremling H, Keime S, Szpirer J, Levan G, Engel W (1991) Chromosomal assignment of four rat genes coding for the spermatid-specific proteins proacrosin (ACR), transition proteins 1 (TNP1) and 2 (TNP2), and protamine 1 (PRM1). Cytogenet Cell Genet 57:47–50

    Article  CAS  PubMed  Google Scholar 

  81. Yasue H, Hisamatsu N, Awata T, Wada Y, Kusamoto H (1999) Clarification of the order of acrosin and aconitase 2 genes on the physical and linkage maps of porcine chromosome 5. Anim Genet 30:161–162

    Article  CAS  PubMed  Google Scholar 

  82. Gaboriau D, Howes EA, Clark J, Jones J (2007) Binding of sperm proacrosin/β-acrosin to zona pellucida glycoproteins is sulfate and stereo dependent synthesis of a novel fertilization inhibitor. Dev Biol 306:646–657

    Article  CAS  PubMed  Google Scholar 

  83. Urch UA (1991) Biochemistry and function of acrosin. In: Wassarman PM (ed) The biology and chemistry of mammalian fertilization. CRC Press, Chicago, pp 233–248

    Google Scholar 

  84. Nuzzo NA, Anderson RA, Zaneveld LJ (1990) Proacrosin activation and acrosin release during the guinea pig acrosome reaction. Mol Reprod Dev 25:52–60

    Article  CAS  PubMed  Google Scholar 

  85. Berlin S, Qu L, Ellegren HJ (2008) Adaptive evolution of gamete recognition proteins in birds. J Mol Evol 67:488–496

    Article  CAS  PubMed  Google Scholar 

  86. Slowinska M, Olczak M, Liszewska E, Wątorek W, Ciereszko (2010) Isolation, characterization and cDNA sequencing of acrosin from turkey spermatozoa. Comp Biochem Physiol 157:127–136

    Google Scholar 

  87. Cesari A, Katunar MR, Monclus MA, Vincenti A, De Rosas JC, Fornes MW (2005) Serine protease activity, bovine sperm protease, 66 kDa (BSp66), is present in hamster sperm and is involved in sperm–zona interaction. Reproduction 129:291–298

    Article  CAS  PubMed  Google Scholar 

  88. Slowinska A, Ciereszko A (2012) Identification of the second form of acrosin in turkey spermatozoa. Reprod Dom Anim 47:849–855

    Article  CAS  Google Scholar 

  89. Froman DP (1990) Chicken acrosin: extraction and purification. Poult Sci 69:812–817

    Article  CAS  PubMed  Google Scholar 

  90. Kotlowska M, Dietrich G, Wojtczak M, Karol H, Ciereszko A (2007) Effects of liquid storage on amidase activity, DNA fragmentation and motility of turkey spermatozoa. Theriogenology 67:276–286

    Article  CAS  PubMed  Google Scholar 

  91. De los Reyes M, Medina G, Palomino J (2009) Western blot analysis of proacrosin/acrosin in frozen dog sperm during in vitro capacitation. Reprod Domestic Anim 44:350–353

    Google Scholar 

  92. De los Reyes M, Palomino J, Martínez V, Aretio C, Gutiérrez M (2011) Acrosin release and acrosin activity during incubation in capacitating media using fresh and frozen-thawed dog sperm. Biol Res 44:139–144

    Google Scholar 

  93. Baba T, Kashiwabara S, Watanabe K, Itoh H, Michikawa Y, Kimura K, Takada M, Fukamizu A, Arai Y (1989a) Activation and maturation mechanisms of boar acrosin zymogen based on the deduced primary structure. J Biol Chem 264:11920–11927

    CAS  PubMed  Google Scholar 

  94. Topfer-Petersen E, Cechova D (1990) Zona pellucida induces conversion of proacrosin to acrosin. Int J Androl 13:190–196

    Article  CAS  PubMed  Google Scholar 

  95. Schleuning WD, Hell R, Fritz H (1976) Multiple forms of human acrosin: isolation and properties. Hoppe-Seyler’s Zeitschrift für physiologische. Chemie 357:855–866

    CAS  Google Scholar 

  96. Shimizu Y, Kodama H, Fukuda J, Tanaka T (1997) Evidence of proacrosin molecule abnormality as a possible cause of low acrosin activity and unexplained failure of fertilization in vitro. J Androl 18:281–288

    CAS  PubMed  Google Scholar 

  97. Kashiwabara S, Baba T, Takada M, Watanabe K, Yano Y, Arai Y (1990) Primary structure of mouse proacrosin deduced from the cDNA sequence and its gene expression during spermatogenesis. J Biochem 108:785–791

    Article  CAS  PubMed  Google Scholar 

  98. Baba T, Michikawa Y, Kawakura K, Arai Y (1989c) Activation of boar proacrosin is effected by processing at both N- and C-terminal portions of the zymogen molecule. FEBS Lett 244:132–136

    Article  CAS  PubMed  Google Scholar 

  99. Baba T, Watanabe K, Kashiwabara S, Arai Y (1989d) Primary structure of human proacrosin deduced from its cDNA sequence. FEBS Lett 244:296–300

    Article  CAS  PubMed  Google Scholar 

  100. Klemm U, Flake A, Engel W (1991a) Rat sperm acrosin: cDNA sequence, derived primary structure and phylogenetic origin. Biochim Biophys Acta 1090:270–272

    Article  CAS  PubMed  Google Scholar 

  101. Yamagata K, Honda A, Kashiwabara S, Baba T (1999) Difference of acrosomal serine protease system between mouse and other rodent sperm. Dev Genet 25:115–122

    Article  CAS  PubMed  Google Scholar 

  102. MuÈller-Esterl W, Fritz H (1981) Sperm acrosin. Methods Enzymol 80:621–632

    Article  Google Scholar 

  103. Siegel MS, Bechtold DS, Kopta CI, Polakoski KL (1986) The rapid purification and partial characterization of human sperm proacrosin using an automated fast protein liquid chromatography (FPLC) system. Biochem Biophys Acta 883:567–573

    Article  CAS  PubMed  Google Scholar 

  104. Hardy DM, Oda MN, Friend DS, Huang TIT (1991) A mechanism for differential release of acrosomal enzymes during the acrosome reaction. Biochem J 275:759–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Baba T, Michikawa Y, Kashiwabara S, Arai Y (1989b) Proacrosin activation in the presence of a 32-kDa protein from boar spermatozoa. Biochem Biophys Res Commun 160:1026–1032

    Article  CAS  PubMed  Google Scholar 

  106. Adham IM, Kremling H, Nieter S, Zimmermann S, Hummel M, Schroeter U, Engel W (1996) The structures of the bovine and porcine proacrosin genes and their conservation among mammals. Biol Chem Hoppe Seyler 377:261–265

    CAS  PubMed  Google Scholar 

  107. Kremling H, Keime S, Wilhelm K, Adham IM, Hameister H, Engel W (1991b) Mouse proacrosin gene: nucleotide sequence, diploid expression, and chromosomal localization. Genomics 11:828–834

    Article  CAS  PubMed  Google Scholar 

  108. Polakoski KL, Parrish RF (1977) Boar proacrosin purification and preliminary activation studies of proacrosin isolated from ejaculated boar sperm. J Biol Chem 252:1888–1894

    CAS  PubMed  Google Scholar 

  109. Cui YH, Zhao RL, Wang Q, Zhang ZY (2000) Determination of sperm acrosin activity for evaluation of male fertility. Asian J Androl 2:229–232

    CAS  PubMed  Google Scholar 

  110. Honda A, Siruntawineti J, Baba T (2002a) Role of acrosomal matrix proteases in sperm-zona pellucida interactions. Hum Reprod Update 8:405–412

    Article  CAS  PubMed  Google Scholar 

  111. Yoneda R, Takahashi T, Matsui H, Takano N, Hasebe Y, Ogiwara K, Kimura AP (2013) Three testis-specific paralogous serine proteases play different roles in murine spermatogenesis and are involved in germ cell survival during meiosis. Biol Reprod 88:118–118

    Article  PubMed  Google Scholar 

  112. Yamagata K, Murayama K, Kohno N, Kashiwabara S, Baba T (1998) P-Aminobenzamidine-sensitive acrosomal protease(s) other than acrosin serves the sperm penetration of the egg zona pellucida in mouse. Zygote 6:311–319

    Article  CAS  PubMed  Google Scholar 

  113. Honda A, Yamagata K, Sugiura S (2002b) A mouse serine protease TESP5 is selectively included into lipid rafts of sperm membrane presumably as a glycosylphosphatidylinositol-anchored protein. J Biol Chem 277:16976–16984

    Article  CAS  PubMed  Google Scholar 

  114. KraÈmer EM, Klein C, Koch T, Boytinck M, Trotter J (1999) Compartmentation of Fyn kinase with glycosylphosphatidylinositol-anchored molecules in oligodendrocytes facilitates kinase activation during myelination. J Biol Chem 274:29042–29049

    Article  Google Scholar 

  115. Cesari A, Cacciato CS, De Castro RE, Sanchez JJ (2003) Low temperature-induced dimerization of the bovine sperm serine protease BSp66. J Cell Biochem 88:1057–1065

    Article  CAS  PubMed  Google Scholar 

  116. Dhami AJ, Sahni KL (1994) Comparative appraisal of physicomorphological and enzymatic attributes of semen and their interrelationships in ox and buffalo bulls. J Appl Anim Res 5:13–20

    Article  CAS  Google Scholar 

  117. Koren E, Milkovic S (1973) Collaginase like peptide in human rat and bull spermatozoa. J Rep Fertil 32:349–356

    Article  CAS  Google Scholar 

  118. Erickson RP, Martin SR (1974) The relationship of mouse spermatozoa to mouse testicular cathepsins. Arch Biochem Biophys 165:114–120

    Article  CAS  PubMed  Google Scholar 

  119. Talbot P, Dicarlantonio G (1985) Cytochemical localization of dipeptidyl peptidaseII (DPPII) in mature guinea pig sperm. J Histochem Cytochem 33:1169–1172

    Article  CAS  PubMed  Google Scholar 

  120. Schollmeyer JE (1986) Identification of calpain II in porcine sperm. Biol Reprod 34:721–731

    Article  CAS  PubMed  Google Scholar 

  121. Meizel S, Cotham J (1972) Partial characterization of sperm bull arylamidases. J Rep Fertil 28:303–307

    Article  CAS  Google Scholar 

  122. Ruenwongsa P (1974) Chulavatnatol M. A new acidic protease in human seminal plasma Biochem Biophys Res Commun 59:44–50

    Article  CAS  PubMed  Google Scholar 

  123. Morton DB (1977) The occurrence and function of proteolytic enzymes in the reproductive tract of mammals. In: Barret AJ (ed) proteinases in mammalian cells and tissues. Elsevier North Holland Biomedical Press, Amsterdam, pp 1977:445–500

    Google Scholar 

  124. Kobayashi T, Park JY, Matsuda Y, Hara I, Kaneki S, Oshio S, Akihama S, Fujimoto Y (1991) Basic arginine esterase from human seminal plasma: purification and some and some properties. Arch Androl 27:197–206

    Article  CAS  PubMed  Google Scholar 

  125. Thurston R, Korn N, Froman DP, Bodine AB (1993) Proteolytic enzymes in seminal plasma of domestic turkey (Meleagris gallopavo). Biol Reprod 48:393–402

    Article  CAS  PubMed  Google Scholar 

  126. Waheed A, Hassan MI, Van Etten RL, Ahmad F (2008) Human seminal protease and prostate-specific antigens are the same protein. J Biosci 133:195–207

    Google Scholar 

  127. Chen Y, Lee M, Lucht A, Chou F, Huang W, Havighurst T et al (2010) TMPRSS2, a serine protease expressed in the prostate on the apical surface of luminal epithelial cells and released into semen in prostasomes, is misregulated in prostate cancer cells. Am J Pathol 176:2986–2996. doi:10.2353/ajpath.2010.090665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Baumgart E, Lenk SV, Loening SA, Jung K (2002) Quantitative differences in matrix metalloproteinase (MMP)-2, but not in MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1 or TIMP-2, in seminal plasma of normozoospermic and azoospermic patients. Hum Reprod 17:2919–2923

    Article  CAS  PubMed  Google Scholar 

  129. Shimokawa K, Katayama M, Matsuda Y, Takahashi H, Hara I, Sato H (2003) Complexes of gelatinases and tissue inhibitor of metalloproteinases in human seminal plasma. J Androl 24:73–77

    CAS  PubMed  Google Scholar 

  130. McCauley TC, Zhang HM, Bellin ME (2001) Identification of a heparin-binding protein in bovine seminal fluid as tissue inhibitor of metalloproteinases-2. Mol Reprod Dev 58:336–341

    Article  CAS  PubMed  Google Scholar 

  131. Robinson LL, Sznajder NA, Riley SC, Anderson RA (2001) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in human fetal testis and ovary. Mol Hum Reprod 7:641–648

    Article  CAS  PubMed  Google Scholar 

  132. Blavier L, DeClerck YA (1997) Tissue inhibitor of metalloproteinase-2 is expressed in the interstitial matrix in adult mouse organs and during embryonic development. Mol Biol Cell 8:1513–1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jonakova V, Calvete JJ, Mann K, Schafer W, Schmid ER, Topfer-Petersen E (1992) The complete primary structure of three isoforms of a boar sperm-associated acrosin inhibitor. FEBS Lett 297:147–150

    Article  CAS  PubMed  Google Scholar 

  134. Fink E, Hehlein-Fink C, Eulitz M (1990) Amino acid sequence elucidation of human acrosin-trypsin inhibitor (HUSI-II) reveals that Kazal- type proteinase inhibitors are structurally related to -subunits of glycoprotein hormones. FEBS Lett 270:222–224

    Article  CAS  PubMed  Google Scholar 

  135. Lessley BA, Brown KI (1978) Purification and properties of a proteinase inhibitor from chicken seminal plasma. Biol Reprod 19:223–234

    Article  CAS  PubMed  Google Scholar 

  136. Laskowski M Jr, Kato I (1980) Protein inhibitors of proteinases. Annu Rev Biochem 49:593–626

    Article  CAS  PubMed  Google Scholar 

  137. Slowinska M, Liszewska E, Nynca J, Bukowska J, Hejmej A, Biliska B et al (2014) Isolation and characterization of an ovoinhibitor, a multidomain Kazal-like inhibitor from turkey (Meleagris gallopavo) seminal plasma. Biol Reprod 91:108–109

    Article  PubMed  CAS  Google Scholar 

  138. Lin M, Lee R, Hwu Y, Lu C, Chu S, Chen Y, Chang W, Li S (2008) SPINKL, a Kazal-type serine protease inhibitor-like protein purified from mouse seminal vesicle fluid, is able to inhibit sperm capacitation. Reproduction 136:559–571

    Article  CAS  PubMed  Google Scholar 

  139. Tseng HC, Lee RK, Hwu YM, Lu CH, Lin MH, Li SH (2013) Mechanisms underlying the inhibition of murine sperm capacitation by the seminal protein, SPINKL. J Cell Biochem 114:888–898. doi:10.1002/jcb.24428

    Article  CAS  PubMed  Google Scholar 

  140. Lee B, Park I, Jin S, Choi H, Kwon JT, Kim J, Jeong J, Cho B-N, Eddy EM, Cho C (2011) Impaired spermatogenesis and fertility in mice carrying a mutation in the SPINK2 gene expressed predominantly in testes. J Biol Chem 286:29108–29117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ou CM, Tang JB, Huang MS, Sudhakar Gandhi PS, Geetha S, Li SH, Chen YH (2012) The mode of reproductive-derived SPINK (serine protease inhibitor Kazal-type) action in the modulation of mammalian sperm activity. Int J Androl 35:52–62

    Article  CAS  PubMed  Google Scholar 

  142. Jalkanen J, Kotimäki M, Huhtaniemi I, Poutanen M (2006) Novel epididymal protease inhibitors with Kazal or WAP family domain. Biochem Biophys Res Commun 349:245–254

    Article  CAS  PubMed  Google Scholar 

  143. Zhou HM, Liu YX (1996) Localization of tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor type-1 (PAI-1) messenger RNA (mRNA) in rat testis. Chin Sci Bull 41:455–458

    Google Scholar 

  144. Le Magueresse-Battistoni B (1998) Plasminogen activator inhibitor-1 is expressed in cultured rat sertoli cells. Biol Reprod 59:591–598

    Article  PubMed  Google Scholar 

  145. Smokovitis A, Kokolis N, Alexopoulos C, Alexaki E, Eleftheriou E (1987) Plasminogen activator activity, plasminogen activator inhibition and plasmin inhibition in spermatozoa and seminal plasma of man and various animal species-effect of plasmin on sperm motility. Fibrinolysis 1:253–257

    Article  CAS  Google Scholar 

  146. Smokovitis A, Kokolis N, Taitzoglou I, Rekkas C (1992) Plasminogen activator: the identification of an additional proteinase at the outer acrosomal membrane of human and boar spermatozoa. Int J Fertil 37:308–314

    CAS  PubMed  Google Scholar 

  147. Murer V, Spetz JF, Hengst U, Altrogge LM, de Agostini A, Monard D (2001) Male fertility defects in mice lacking the serine protease inhibitor protease nexin-1. Proc Natl Acad Sci 98:3029–3033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lu CH, Lee RKK, Hwu YM, Chu SL, Chen YJ, Chang WC, Lin SP, Li SH (2011) SERPINE2, a serine protease inhibitor extensively expressed in adult male mouse reproductive tissues, may serve as a murine sperm decapacitation factor. Biol Reprod 84:514–525

    Article  CAS  PubMed  Google Scholar 

  149. Charron Y, Madani R, Nef S (2006) Expression of Serpinb6 serpins in germ and somatic cells of mouse gonads. Mol Reprod Dev 73:9–19

    Article  CAS  PubMed  Google Scholar 

  150. Cechova D, Fritz H (1976) Characterization of the proteinase inhibitors from bull seminal plasma and spermatozoa. Hoppe Seylers Z Physiol Chem 357:401–408

    Article  CAS  PubMed  Google Scholar 

  151. Veselsky L, Jonakova VC, Echova D (1985) A Kunitz type of proteinase inhibitor isolated from boar seminal vesicle fluid. Andrologia 17:352–358

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Director, National Institute of Animal Nutrition and Physiology (NIANP), Bangalore, India for providing funds and facilities for carrying out the present study. The first author was supported by Junior Research Fellowship from Indian Council of Medical Research, New Delhi. The authors also thank the Director, Indian Veterinary Research Institute (IVRI), Bareilly, India for providing an opportunity to the first author for conducting the present study at NIANP, Bangalore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir C. Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Gurupriya, V.S., Roy, S.C. (2017). Proteases and Protease Inhibitors in Male Reproduction. In: Chakraborti, S., Dhalla, N. (eds) Proteases in Physiology and Pathology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2513-6_10

Download citation

Publish with us

Policies and ethics