Advertisement

Variational Methods for Biomolecular Modeling

  • Guo-Wei WeiEmail author
  • Yongcheng Zhou
Chapter
Part of the Molecular Modeling and Simulation book series (MMAS)

Abstract

Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrostatics and solvation that includes the curvature energy of the molecular surface, the formation of microdomains on lipid membrane due to the geometric and molecular mechanics at the lipid interface, and the mean curvature driven protein localization on membrane surfaces. By further implicitly representing the interface using a phase field function over the entire domain, one can simulate the dynamics of the interface and the corresponding energy variation by evolving the phase field function, achieving significant reduction of the number of degrees of freedom and computational complexity. Strategies for improving the efficiency of computational implementations and for extending applications to coarse-graining or multiscale molecular simulations are outlined.

Keywords

Bilayer Membrane Molecular Surface Solvation Free Energy Geodesic Curvature Membrane Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Adkins. Modeling local pattern formation on membrane surfaces using nonlocal interactions. Ph.D. thesis, Colorado State University, 2015Google Scholar
  2. 2.
    B. Alberts, A. Johnson, J. Lewis, K. Roberts, P. Walter, Molecular Biology of the Cell (Garland, Martin Raff, 2002)Google Scholar
  3. 3.
    R.G.W. Anderson, K. Jacobson, A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296, 1821–1825 (2002)Google Scholar
  4. 4.
    T. Apajalahti, P. Niemela, P.N. Govindan, M.S. Miettinen, E. Salonen, S.-J. Marrink, I. Vattulainen, Concerted diffusion of lipids in raft-like membranes. Faraday Discuss. 144, 411–430 (2010)Google Scholar
  5. 5.
    G. Archontis, T. Simonson, M. Karplus, Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. application to amino acid recognition by Aspartyl-tRNA synthetase. J. Mol. Biol. 306(2), 307–327 (2001)CrossRefGoogle Scholar
  6. 6.
    C. Azuara, E. Lindahl, P. Koehl, H. Orland, M. Delarue, PDB_Hydro: incorporating dipolar solvents with variable density in the Poisson-Boltzmann treatment of macromolecule electrostatics. Nucleic Acids Res. 34(Web-Server-Issue), 38–42 (2006)Google Scholar
  7. 7.
    N.A. Baker, Biomolecular applications of Poisson-Boltzmann methods. Rev. Comput. Chem. 21, 349–379 (2005)Google Scholar
  8. 8.
    P.W. Bates, Z. Chen, Y.H. Sun, G.W. Wei, S. Zhao, Geometric and potential driving formation and evolution of biomolecular surfaces. J. Math. Biol. 59, 193–231 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    P.W. Bates, G.W. Wei, S. Zhao, The minimal molecular surface (2006). arXiv:q-bio/0610038v1, [q-bio.BM]
  10. 10.
    P.W. Bates, G.W. Wei, S. Zhao, Minimal molecular surfaces and their applications. J. Comput. Chem. 29(3), 380–91 (2008)CrossRefGoogle Scholar
  11. 11.
    T. Baumgart, B.R. Capraro, C. Zhu, S.L. Das, Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Ann. Rev. Phys. Chem. 62, 483–506 (2011)CrossRefGoogle Scholar
  12. 12.
    S.C. Brenner, G. Shiyuan, T. Gudi, L.-Y. Sung, A quadratic c0 interior penalty method for linear fourth order boundary value problems with boundary conditions of the Cahn-Hilliard type. SIAM J. Numer. Anal. 50(4), 2088–2110 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    R. Brewster, P.A. Pincus, S.A. Safran, Hybrid lipids as a biological surface-active component. Biophys. J. 97, 1087–1094 (2009)CrossRefGoogle Scholar
  14. 14.
    R. Brewster, S.A. Safran, Line active hybrid lipids determine domain size in phase separation of saturated and unsaturated lipids. Biophys. J. 98(6), L21–L23 (2010)CrossRefGoogle Scholar
  15. 15.
    B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, M. Karplus, CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983)CrossRefGoogle Scholar
  16. 16.
    K.M. Callenberg, N.R. Latorraca, M. Grabe, Membrane bending is critical for the stability of voltage sensor segments in the membrane. J. Gen. Physiol. 140, 55–68 (2012)CrossRefGoogle Scholar
  17. 17.
    A.B. Camley, F.L.H. Brown, Dynamic simulations of multicomponent lipid membranes over long length and time scales. Phys. Rev. Lett. 105, 148102 (2010)CrossRefGoogle Scholar
  18. 18.
    F. Campelo, A. Hernandez-Machado, Shape instabilities in vesicles: a phase-field model. Euro. Phys. J. Spec. Top. 143(1), 101–108 (2007)CrossRefGoogle Scholar
  19. 19.
    P.B. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Math. Biol. 26, 61–81 (1970)Google Scholar
  20. 20.
    D.A. Case, D.A. Pearlman, J.W. Caldwell, T.E. Cheatham, W.S. Ross, C.L. Simmerling, T.A. Darden, K.M. Merz, R.V. Stanton, A.L. Cheng, J.J. Vincent, M. Crowley, D.M. Ferguson, V. Tsui, R.J. Radmer, Y. Duan, J. Pitera, I. Massova, G.L. Seibel, U.C. Singh, P.K. Weiner, P.A. Kollman, Amber 7.0 (University of California, San Francisco, CA, 2002)Google Scholar
  21. 21.
    J. Che, J. Dzubiella, B. Li, J.A. McCammon, Electrostatic free energy and its variations in implicit solvent models. J. Phys. Chem. B 112, 3058–3069 (2008)Google Scholar
  22. 22.
    M. Chen, T. Bin, Benzhuo Lu, Triangulated manifold meshing method preserving molecular surface topology. J. Mole. Graph. Model. 38, 411–418 (2012)Google Scholar
  23. 23.
    X. Chen, Q. Cui, Computational molecular biomechanics: a hierarchical multiscale framework with applications to gating of mechanosensitive channels of large conductance, in Trends in Computational Nanomechanics, vol. 9, Challenges and Advances in Computational Chemistry and Physics, ed. by Traian Dumitrica (Springer, Netherlands, 2010), pp. 535–556CrossRefGoogle Scholar
  24. 24.
    X. Chen, Spectrum for the allen-cahn, cahn-hilliard, and phase-field equations for generic interfaces. Commun. Partial Differ. Equ. 19, 1371–1395 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Z. Chen, G.W. Wei, Differential geometry based solvation models III: Quantum formulation. J. Chem. Phys. 135, 194108 (2011)CrossRefGoogle Scholar
  26. 26.
    Z. Chen, N.A. Baker, G.W. Wei, Differential geometry based solvation model II: Lagrangian formulation. J. Math. Biol. 63(6), 1139–1200 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Z. Chen, N.A. Baker, G.W. Wei, Differential geometry based solvation model I: Eulerian formulation. J. Comput. Phys. 229(22), 8231–8258 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Z. Chen, S. Zhao, J. Chun, D.G. Thomas, N.A. Baker, P.W. Bates, G.W. Wei, Variational approach for nonpolar solvation analysis. J. Chem. Phys. 137(8) (2012)Google Scholar
  29. 29.
    L.T. Cheng, J. Dzubiella, A.J. McCammon, B. Li, Application of the level-set method to the implicit solvation of nonpolar molecules. J. Chem. Phys. 127(8) (2007)Google Scholar
  30. 30.
    L.-T. Cheng, Y. Xie, J. Dzubiella, J.A. McCammon, J. Che, B. Li, Coupling the level-set method with molecular mechanics for variational implicit solvation of nonpolar molecules. J. Chem. Theor. Comput. 5(2), 257–266 (2009). PMID: 20150952Google Scholar
  31. 31.
    C. Chipot, Free energy calculations in biological systems. How useful are they in practice?, in New Algorithms for Macromolecular Simulation, ed. by B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C. Schütte, R. Skeel (Springer, Berlin, Heidelberg, 2006), pp. 185–211Google Scholar
  32. 32.
    S. Choe, K.A. Hecht, M. Grabe, A continuum method for determining membrane protein insertion energies and the problem of charged residues. J. Gen. Physiol. 131, 563–6573 (2008)CrossRefGoogle Scholar
  33. 33.
    N. Choudhury, B.M. Pettitt, On the mechanism of hydrophobic association of nanoscopic solutes. J. Am. Chem. Soc. 127(10), 3556–3567 (2005)CrossRefGoogle Scholar
  34. 34.
    V.B. Chu, Y. Bai, J. Lipfert, D. Herschlag, S. Doniach, Evaluation of ion binding to DNA duplexes using a size-modified Poisson-Boltzmann theory. Biophys. J. 93, 3202–3209 (2007)CrossRefGoogle Scholar
  35. 35.
    F.S. Cohen, R. Eisenberg, R.J. Ryham, A dynamic model of open vesicles in fluids. Commun. Math. Sci. 10, 1273–1285 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    P. Concus, G.H. Golub, Use of fast direct methods for the efficient numerical solution of nonseparable elliptic equations. SIAM J. Numer. Anal. 10(6), 1103–1120 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    I.R. Cooke, M. Deserno, Coupling between lipid shape and membrane curvature. Biophys. J. 91(2), 487–495 (2006)CrossRefGoogle Scholar
  38. 38.
    S. Dai, K. Promislow, Geometric evolution of bilayers under the functionalized Cahn-Hilliard equation. Proc. R. Soc. A 469, 20120505 (2013)MathSciNetCrossRefGoogle Scholar
  39. 39.
    M. Daily, J. Chun, A. Heredia-Langner, G.W. Wei, N.A. Baker, Origin of parameter degeneracy and molecular shape relationships in geometric-flow calculations of solvation free energies. J. Chem. Phys. 139, 204108 (2013)CrossRefGoogle Scholar
  40. 40.
    M.E. Davis, J.A. McCammon, Electrostatics in biomolecular structure and dynamics. Chem. Rev. 90(3), 509–521 (1990)CrossRefGoogle Scholar
  41. 41.
    K.A. Dill, S. Bromberg, Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology, 2 edn. (Garland Science, 2010)Google Scholar
  42. 42.
    Q. Du, C. Liu, R. Ryham, X. Wang, Modeling the spontaneous curvature effects in static cell membrane deformations by a phase field formulation. Commun. Pure Appl. Anal. 4, 537–548 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Q. Du, L. Ju, L. Tian, Finite element approximation of the Cahn-Hilliard equation on surfaces. Comput. Methods Appl. Mech. Eng. 200(29–32), 2458–2470 (2011)Google Scholar
  44. 44.
    Q. Du, C. Liu, R. Ryham, X. Wang, A phase field formulation of the Willmore problem. Nonlinearity 18, 1249 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Q. Du, C. Liu, X. Wang, Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J. Comput. Phys. 212(2), 757–777 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    J. Dzubiella, J.M.J. Swanson, J.A. McCammon, Coupling hydrophobicity, dispersion, and electrostatics in continuum solvent models. Phys. Rev. Lett. 96, 087802 (2006)CrossRefGoogle Scholar
  47. 47.
    J. Dzubiella, J.M.J. Swanson, J.A. McCammon, Coupling nonpolar and polar solvation free energies in implicit solvent models. J. Chem. Phys. 124(8) (2006)Google Scholar
  48. 48.
    H. Edelsbrunner, P. Koehl, The geometry of biomolecular solvation, in Combinatorial and Computational Geometry, pp. 243–276 (2005)Google Scholar
  49. 49.
    E.A. Evans, Bending resistance and chemically induced moments in membrane bilayers. Biophys. J. 14, 923–931 (1974)CrossRefGoogle Scholar
  50. 50.
    J. Faraudo, Diffusion equation on curved surfaces. I. Theory and application to biological membranes. J. Chem. Phys. 116, 5831 (2002)CrossRefGoogle Scholar
  51. 51.
    K. Farsad, P.D. Camilli, Mechanisms of membrane deformation. Curr. Opin. Cell Biol. 15, 372–381 (2003)CrossRefGoogle Scholar
  52. 52.
    M. Feig, C.L. Brooks, Recent advances in the development and application of implicit solvent models in biomolecule simulations. Curr. Opin. Struct. Biol. 14(2), 217–224 (2004)CrossRefGoogle Scholar
  53. 53.
    N. Fuller, C.R. Benatti, R. Peter Rand, Curvature and bending constants for phosphatidylserine-containing membranes. Biophys. J. 85, 1667–1674 (2003)Google Scholar
  54. 54.
    E. Gallicchio, R.M. Levy, AGBNP: an analytic implicit solvent model suitable for molecular dynamics simulations and high-resolution modeling. J. Comput. Chem. 25(4), 479–499 (2004)CrossRefGoogle Scholar
  55. 55.
    E. Gallicchio, L.Y. Zhang, R.M. Levy, The SGB/NP hydration free energy model based on the surface generalized Born solvent reaction field and novel nonpolar hydration free energy estimators. J. Comput. Chem. 23(5), 517–529 (2002)CrossRefGoogle Scholar
  56. 56.
    L.-T. Gao, X.-Q. Feng, H. Gao, A phase field method for simulating morphological evolution of vesicles in electric fields. J. Comput. Phys. 228(11), 4162–4181 (2009)zbMATHCrossRefGoogle Scholar
  57. 57.
    N. Gavish, G. Hayrapetyan, K. Promislow, L. Yang, Curvature driven flow of bi-layer interfaces. Phys. D: Nonlinear Phenom. 240(7), 675–693 (2011)zbMATHCrossRefGoogle Scholar
  58. 58.
    W. Geng, G.W. Wei, Multiscale molecular dynamics using the matched interface and boundary method. J. Comput. Phys. 230(2), 435–457 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    M.K. Gilson, M.E. Davis, B.A. Luty, J.A. McCammon, Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation. J. Phys. Chem. 97(14), 3591–3600 (1993)Google Scholar
  60. 60.
    J.A. Grant, B.T. Pickup, A Gaussian description of molecular shape. J. Phys. Chem. 99, 3503–3510 (1995)CrossRefGoogle Scholar
  61. 61.
    J.A. Grant, B.T. Pickup, A. Nicholls, A smooth permittivity function for Poisson-Boltzmann solvation methods. J. Comput. Chem. 22(6), 608–640 (2001)CrossRefGoogle Scholar
  62. 62.
    J.A. Grant, B.T. Pickup, M.T. Sykes, C.A. Kitchen, A. Nicholls, The Gaussian Generalized Born model: application to small molecules. Phys. Chem. Chem. Phys. 9, 4913–22 (2007)CrossRefGoogle Scholar
  63. 63.
    P. Grochowski, J. Trylska, Continuum molecular electrostatics, salt effects, and counterion binding—a review of the Poisson-Boltzmann theory and its modifications. Biopolymers 89, 93–113 (2008)CrossRefGoogle Scholar
  64. 64.
    J. Gumbart, B. Roux, Determination of membrane-insertion free energies by molecular dynamics simulations. Biophys. J. 102, 795–801 (2012)CrossRefGoogle Scholar
  65. 65.
    W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch 28c, 693–703 (1973)Google Scholar
  66. 66.
    H.J. Hocker, K.-J. Cho, C.-Y.K. Chen, N. Rambahal, S.R. Sagineedu, K. Shaari, J. Stanslas, J.F. Hancock, A.A. Gorfe, Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function. Proc. Natl. Acad. Sci. U.S.A. 110(25), 10201–10206 (2013)Google Scholar
  67. 67.
    T.-L. Horng, T.-C. Lin, C. Liu, B. Eisenberg, PNP equations with steric effects: a model of ion flow through channels. J. Phys. Chem. B 116(37), 11422–11441 (2012)CrossRefGoogle Scholar
  68. 68.
    M.D. Huang, D. Chandler, Temperature and length scale dependence of hydrophobic effects and their possible implications for protein folding. Proc. Natl. Acad. Sci. 97(15), 8324–8327 (2000)CrossRefGoogle Scholar
  69. 69.
    Y. Hyon, B. Eisenberg, C. Liu, A mathematical model for the hard sphere repulsion in ionic solutions. Commun. Math. Sci. 9, 459–475 (2011)Google Scholar
  70. 70.
    Y. Hyon, J.E. Fonseca, B. Eisenberg, C. Liu, Energy variational approach to study charge inversion (layering) near charged walls. Discrete Contin. Dyn. Syst. Ser. B 17, 2725–2743 (2012)Google Scholar
  71. 71.
    Y.K. Hyon, B. Eisenberg, C. Liu, An energetic variational approach to ion channel dynamics. Math. Methods Appl. Sci. 37(7), 952–961 (2014)Google Scholar
  72. 72.
    A. Ivankin, I. Kuzmenko, D. Gidalevitz, Cholesterol mediates membrane curvature during fusion events. Phys. Rev. Lett. 108, 238103 (2012)CrossRefGoogle Scholar
  73. 73.
    A. Jaramillo, S.J. Wodak, Computational protein design is a challenge for implicit solvation models. Biophys. J. 88, 156–171 (2005)CrossRefGoogle Scholar
  74. 74.
    K.S. Kim, J. Neu, G. Oster, Curvature-mediated interactions between membrane proteins. Biophys. J. 75, 2274–2291 (1998)CrossRefGoogle Scholar
  75. 75.
    T. Kirchhausen, Bending membranes. Nat. Cell Biol. 14, 906–908 (2012)CrossRefGoogle Scholar
  76. 76.
    W. Kuhnel, Differential Geometry: Curves, Surfaces, Manifolds (AMS, 2006)Google Scholar
  77. 77.
    B. Lee, F.M. Richards, The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55(3), 379–400 (1971)CrossRefGoogle Scholar
  78. 78.
    H.G. Lee, J. Kim, Regularized dirac delta functions for phase field models. Int. J. Numer. Methods Eng. 91(3), 269–288 (2012)Google Scholar
  79. 79.
    M.S. Lee, M.A. Olson, Comparison of volume and surface area nonpolar solvation free energy terms for implicit solvent simulations. J. Chem. Phys. 139(4) (2013)Google Scholar
  80. 80.
    G.P. Leser, R.A. Lamb, Influenza virus assembly and budding in raft-derived microdomains: a quantitative analysis of the surface distribution of HA, NA and M2 proteins. Virology 342(2), 215–227 (2005)CrossRefGoogle Scholar
  81. 81.
    R.M. Levy, L.Y. Zhang, E. Gallicchio, A.K. Felts, On the nonpolar hydration free energy of proteins: surface area and continuum solvent models for the solute-solvent interaction energy. J. Am. Chem. Soc. 125, 9523–9530 (2003)Google Scholar
  82. 82.
    B. Li, Minimization of electrostatic free energy and the Poisson-Boltzmann equation for molecular solvation with implicit solvent. SIAM J. Math. Anal. 40, 2536–2566 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    B. Li, Continuum electrostatics for ionic solutions with non-uniform ionic sizes. Nonlinearity 22, 811 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    B. Li, X. Cheng, Z. Zhou, Dielectric boundary force in molecular solvation with the Poisson-Boltzmann free energy: a shape derivative approach. SIAM J. Appl. Math. 71, 2093–2111 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    H. Li, A.A. Gorfe, Aggregation of lipid-anchored full-length H-Ras in lipid bilayers: simulations with the MARTINI force field. PLoS ONE 8(7), e71018, 07 (2013)Google Scholar
  86. 86.
    S. Li, J. Lowengrub, A. Voigt, Locomotion, wrinkling, and budding of a multicomponent vesicle in viscous fluids. Commun. Math. Sci. 10, 645–670 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    H.Y. Lin, X. Zou, Electrostatics of ligand binding: parametrization of the generalized Born model and comparison with the Poisson-Boltzmann approach. J. Phys. Chem. B 110, 9304–9313 (2006)CrossRefGoogle Scholar
  88. 88.
    B. Lu, Y.C. Zhou, M. Holst, J.A. McCammon, Recent progress in numerical solution of the Poisson-Boltzmann equation for biophysical applications. Commun. Comput. Phys. 3, 973–1009 (2008)zbMATHGoogle Scholar
  89. 89.
    B. Lu, Y.C. Zhou, Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes II. Biophys. J. 100, 2475–2485 (2011)CrossRefGoogle Scholar
  90. 90.
    K. Lum, D. Chandler, J.D. Weeks, Hydrophobicity at small and large length scales. J. Phys. Chem. B 103(22), 4570–4577 (1999)CrossRefGoogle Scholar
  91. 91.
    V. Luzhkov, A. Warshel, Microscopic models for quantum-mechanical calculations of chemical processes in solutions—ld/ampac and scaas/ampac calculations of solvation energies. J. Comput. Chem. 13(2), 199–213 (1992)CrossRefGoogle Scholar
  92. 92.
    J.D. Madura, Y. Nakajima, R.M. Hamilton, A. Wierzbicki, A. Warshel, Calculations of the electrostatic free energy contributions to the binding free energy of sulfonamides to carbonic anhydrase. Struct. Chem. 7(2), 131–138 (1996)CrossRefGoogle Scholar
  93. 93.
    D. Marsh, Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. Biophys. J. 93, 3884–3899 (2007)CrossRefGoogle Scholar
  94. 94.
    A. Martinire, I. Lavagi, G. Nageswaran, D.J. Rolfe, L. Maneta-Peyret, D.-T. Luu, S.W. Botchway, S.E.D. Webb, S. Mongrand, C. Maurel, M.L. Martin-Fernandez, J. Kleine-Vehn, J. Friml, P. Moreau, J. Runions, Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc. Natl. Acad. Sci. U.S.A. 109(31), 12805–12810 (2012)Google Scholar
  95. 95.
    I. Massova, A. Kollman, Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect. Drug Discov. Des. 18(1), 113–135 (2000)CrossRefGoogle Scholar
  96. 96.
    H.T. McMahon, J.L. Gallop, Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596 (2005)CrossRefGoogle Scholar
  97. 97.
    M. Mikucki, Electromechanical and curvature-driven molecular flows for lipid membranes. Ph.D. thesis, Colorado State University, 2015Google Scholar
  98. 98.
    C. Mim, V.M. Unger, Membrane curvature and its generation by BAR proteins. Trends Biochem. Sci. 37(12), 526–533 (2012)CrossRefGoogle Scholar
  99. 99.
    A. Nicholls, D.L. Mobley, J. Peter Guthrie, J.D. Chodera, C.I. Bayly, M.D. Cooper, V.S. Pande, Predicting small-molecule solvation free energies: an informal blind test for computational chemistry. J. Med. Chem. 51(4), 769–779 (2008). PMID: 18215013Google Scholar
  100. 100.
    S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Chem. Phys. 79(1), 12–49 (1988)MathSciNetzbMATHGoogle Scholar
  101. 101.
    I. Park, Y.H. Jang, S. Hwang, D.S. Chung, Poisson-Boltzmann continuum solvation models for nonaqueous solvents I. 1-octanol. Chem. Lett. 32(4), 376–377 (2003)CrossRefGoogle Scholar
  102. 102.
    R. Parthasarathy, Y. Cheng-Han, J.T. Groves, Curvature-modulated phase separation in lipid bilayer membranes. Langmuir 22(11), 5095–5099 (2006)CrossRefGoogle Scholar
  103. 103.
    D.L. Parton, J.W. Klingelhoefer, S.P. Mark, Aggregation of model membrane proteins, modulated by hydrophobic mismatch, membrane curvature, and protein class. Biophys. J. 101(3), 691–699 (2011)CrossRefGoogle Scholar
  104. 104.
    J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kal, K. Schulten, Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005)CrossRefGoogle Scholar
  105. 105.
    R.A. Pierotti, A scaled particle theory of aqueous and nonaqueous solutions. Chem. Rev. 76(6), 717–726 (1976)CrossRefGoogle Scholar
  106. 106.
    L.J. Pike, Lipid rafts: bringing order to chaos. J. Lipid Res. 44, 655–667 (2003)MathSciNetCrossRefGoogle Scholar
  107. 107.
    S. Ramadurai, A. Holt, V. Krasnikov, G. van den Bogaart, J. Antoinette Killian, B. Poolman, Lateral diffusion of membrane proteins. J. Am. Chem. Soc. 131, 12650–12656 (2009)Google Scholar
  108. 108.
    M. Rami Reddy, C. Ravikumar Reddy, R.S. Rathore, M.D. Erion, P. Aparoy, R. Nageswara Reddy, P. Reddanna, Free energy calculations to estimate ligand-binding affinities in structure-based drug design. Curr. Pharm. Des. 20, 3323–3337 (2014)Google Scholar
  109. 109.
    P. Ren, J. Chun, D.G. Thomas, M.J. Schnieders, M. Marucho, J. Zhang, N.A. Baker, Biomolecular electrostatics and solvation: a computational perspective. Quart. Rev. Biophys. 45(11), 427–491 (2012)Google Scholar
  110. 110.
    B.J. Reynwar, G. Illya, V.A. Harmandaris, M.M. Muller, K. Kremer, M. Deserno, Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447, 461–464 (2006)CrossRefGoogle Scholar
  111. 111.
    F.M. Richards, Areas, volumes, packing, and protein structure. Annu. Rev. Biophys. Bioeng. 6(1), 151–176 (1977)CrossRefGoogle Scholar
  112. 112.
    J.E. Rothman, Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994)CrossRefGoogle Scholar
  113. 113.
    R.J. Ryham, M.A. Ward, F.S. Cohen, Teardrop shapes minimize bending energy of fusion pores connecting planar bilayers. Phys. Rev. E 88, 062701 (2013)CrossRefGoogle Scholar
  114. 114.
    T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary Guide (Springer, 2002)Google Scholar
  115. 115.
    N.W. Schmidt, A. Mishra, J. Wang, W.F. DeGrado, C.L. Gerard, Wong. Influenza virus A M2 protein generates negative Gaussian membrane curvature necessary for budding and scission. J. Am. Chem. Soc. 135(37), 13710 (2013)CrossRefGoogle Scholar
  116. 116.
    K.A. Sharp, B. Honig, Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation. J. Phys. Chem. 94, 7684–7692 (1990)CrossRefGoogle Scholar
  117. 117.
    M.R. Shirts, D.L. Mobley, S.P. Brown, Free-energy calculations in structure-based drug design, in Drug Design: Structure- and Ligand-Based Approaches (Cambridge University Press, 2010)Google Scholar
  118. 118.
    K. Simons, D. Toomre, Lift rafts and signal transduction. Nat. Rev. Mol. Biol. 1, 31–40 (2000)CrossRefGoogle Scholar
  119. 119.
    T. Simonson, G. Archontis, M. Karplus, Free energy simulations come of age: protein-ligand recognition. Accounts Chem. Res. 35(6), 430–437 (2002)CrossRefGoogle Scholar
  120. 120.
    R.E. Skyner, J.L. McDonagh, C.R. Groom, T. van Mourik, J.B.O. Mitchell, A review of methods for the calculation of solution free energies and the modelling of systems in solution. Phys. Chem. Chem. Phys. 17, 6174–6191 (2015)CrossRefGoogle Scholar
  121. 121.
    T. Sollner, M.K. Bennett, S.W. Whiteheart, R.H. Scheller, J.E. Rothman, A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75(3), 409–418 (1993)CrossRefGoogle Scholar
  122. 122.
    J.C. Stachowiak, C.C. Hayden, D.Y. Sasaki, Steric confinement of proteins on lipid membranes can drive curvature and tubulation. Proc. Natl. Acad. Sci. U.S.A. 107(17), 7781–7786 (2010)CrossRefGoogle Scholar
  123. 123.
    O. Sten-Knudsen, Biological Membranes: Theory of Transport, Potential and Electric Impulses (Cambridge University Press, Cambridge, 2002)Google Scholar
  124. 124.
    F.H. Stillinger, Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory. J. Solut. Chem. 2, 141–158 (1973)CrossRefGoogle Scholar
  125. 125.
    J. Strain, Fast spectrally-accurate solution of variable-coefficient elliptic problems. Proc. Am. Math. Soc. 122, 843–850 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  126. 126.
    S. Svetina, Curvature-dependent protein-lipid bilayer interaction and cell mechanosensitivity. Eur. Bio. Phys. J. 1–7 (2015)Google Scholar
  127. 127.
    J.M.J. Swanson, R.H. Henchman, J.A. McCammon, Revisiting free energy calculations: a theoretical connection to MM/PBSA and direct calculation of the association free energy. Biophys. J. 86(1), 67–74 (2004)CrossRefGoogle Scholar
  128. 128.
    T. Takahashi, T. Suzuki, Function of membrane rafts in viral life cycles and host cellular response. Biochem. Res. Int. 2011, 245090 (2011)CrossRefGoogle Scholar
  129. 129.
    Y. Tang, G. Cao, X. Chen, J. Yoo, A. Yethiraj, Q. Cui, A finite element framework for studying the mechanical response of macromolecules: application to the gating of machanosensitive channel MscL. Biophys. J. 91, 1248–1263 (2006)CrossRefGoogle Scholar
  130. 130.
    K.E. Teigen, X. Li, J. Lowengrub, F. Wang, A. Voigt, A diffuse-interface approach for modelling transport, diffusion and adsorption/desorption of material quantities on a deformable interface. Commun. Math. Sci. 7, 1009–1037 (2009)Google Scholar
  131. 131.
    K.E. Teigen, P. Song, J. Lowengrub, A. Voigt, A diffuse-interface method for two-phase flows with soluble surfactants. J. Comput. Phys. 230, 375–393 (2011)Google Scholar
  132. 132.
    D.G. Thomas, J. Chun, Z. Chen, G.W. Wei, N.A. Baker, Parameterization of a geometric flow implicit solvation model. J. Comput. Chem. 24, 687–695 (2013)CrossRefGoogle Scholar
  133. 133.
    D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, J.C.H. Berendsen, GROMACS: fast, flexible, and free. J. Comput. Chem. 26(16), 1701–1718 (2005)CrossRefGoogle Scholar
  134. 134.
    F.S. Vieira, G. Correa, M. Einicker-Lamas, R. Coutinho-Silva, Host-cell lipid rafts: a safe door for micro-organisms? Biol. Cell 102(7), 391–407 (2010)Google Scholar
  135. 135.
    A. Voth, M.S. Gregory, Membrane tension controls the assembly of curvature-generating proteins. Nat. Commun. 6, 7219 (2015)Google Scholar
  136. 136.
    J. Wagoner, N.A. Baker, Solvation forces on biomolecular structures: a comparison of explicit solvent and Poisson-Boltzmann models. J. Comput. Chem. 25(13), 1623–1629 (2004)CrossRefGoogle Scholar
  137. 137.
    J.A. Wagoner, N.A. Baker, Assessing implicit models for nonpolar mean solvation forces: the importance of dispersion and volume terms. Proc. Natl. Acad. Sci. U.S.A. 103(22), 8331–8336 (2006)CrossRefGoogle Scholar
  138. 138.
    B. Wang, G.W. Wei, Parameter optimization in differential geometry based solvation models. J. Chem. Phys. 143, 134119 (2015)CrossRefGoogle Scholar
  139. 139.
    Y. Wang, G.W. Wei, S.-Y. Yang, Partial differential equation transform—variational formulation and Fourier analysis. Int. J. Numer. Methods Biomed. Eng. 27, 1996–2020 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  140. 140.
    Y. Wang, G.W. Wei, S.-Y. Yang, Iterative filtering decomposition based on local spectral evolution kernel. J. Sci. Comput. 50, 629–664 (2012)MathSciNetCrossRefGoogle Scholar
  141. 141.
    Y. Wang, G.W. Wei, S.-Y. Yang, Mode decomposition evolution equations. J. Sci. Comput. 50, 495–518 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  142. 142.
    A. Warshel. Consistent calculations of electrostatic energies in proteins and solutions. Abstr. Pap. Am. Chem. Soc. 214, 191–COMP (1997)Google Scholar
  143. 143.
    A. Warshel, Z.T. Chu, Calculations of solvation free-energies in chemistry and biology, in ACS Symposium Series, vol. J9, no. 568, pp. 71–94 (1994)Google Scholar
  144. 144.
    A. Warshel, P.K. Sharma, M. Kato, W.W. Parson, Modeling electrostatic effects in proteins. BBA-Proteins Proteomics 1764, 1647–1676 (2006)CrossRefGoogle Scholar
  145. 145.
    G.W. Wei, Generalized Perona-Malik equation for image restoration. IEEE Signal Process. Lett. 6(7), 165–167 (1999)CrossRefGoogle Scholar
  146. 146.
    G.W. Wei, Y.H. Sun, Y.C. Zhou, M. Feig, Molecular multiresolution surfaces, pp. 1–11 (2005). arXiv:math-ph/0511001v1
  147. 147.
    G.-W. Wei, Differential geometry based multiscale models. Bull. Math. Biol. 72(6), 1562–1622 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  148. 148.
    G.-W. Wei, Multiscale, multiphysics and multidomain models I: basic theory. J. Chem. Theor. Comput. 12(8), 1341006 (2013)CrossRefGoogle Scholar
  149. 149.
    G.-W. Wei, Q. Zheng, Z. Chen, K. Xia, Variational multiscale models for charge transport. SIAM Rev. 54(4), 699–754 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  150. 150.
    H. Whitney, Geometric Integration Theory (Dover, 2005)Google Scholar
  151. 151.
    T. Witkowski, R. Backofen, A. Voigt, The influence of membrane bound proteins on phase separation and coarsening in cell membranes. Phys. Chem. Chem. Phys. 14, 14509–14515 (2012)CrossRefGoogle Scholar
  152. 152.
    J.J. Xu, Y. Yang, J. Lowengrub, A level-set continuum method for two-phase flows with insoluble surfactant. J. Comput. Phys. 231(17), 5897–5909 (2012)Google Scholar
  153. 153.
    S. Xu, P. Sheng, C. Liu, An energetic variational approach for ion transport. Commun. Math. Sci. 12, 779–789 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  154. 154.
    Z.Y. Yu, C. Bajaj, Computational approaches for automatic structural analysis of large biomolecular complexes. IEEE/ACM Trans. Comput. Biol. Bioinform. 5, 568–582 (2008)CrossRefGoogle Scholar
  155. 155.
    S. Zhao, Pseudo-time-coupled nonlinear models for biomolecular surface representation and solvation analysis. Int. J. Numer. Methods Biomed. Eng. 27, 1964–1981 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  156. 156.
    S. Zhao, Operator splitting ADI schemes for pseudo-time coupled nonlinear solvation simulations. J. Comput. Phys. 257, 1000–1021 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  157. 157.
    Y. Zhao, D. Qiang, Diffuse interface model of multicomponent vesicle adhesion and fusion. Phys. Rev. E 84, 011903 (2011)CrossRefGoogle Scholar
  158. 158.
    Q. Zheng, D. Chen, G.W. Wei, Second-order Poisson-Nernst-Planck solver for ion transport. J. Comput. Phys. 230, 5239–5262 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  159. 159.
    Q. Zheng, S.Y. Yang, G.W. Wei, Molecular surface generation using PDE transform. Int. J. Numer. Methods Biomed. Eng. 28, 291–316 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  160. 160.
    S. Zhou, L.-T. Cheng, J. Dzubiella, B. Li, J.A. McCammon, Variational implicit solvation with Poisson–Boltzmann theory. J. Chem. Theor. Comput. 10(4), 1454–1467 (2014). PMID: 24803864Google Scholar
  161. 161.
    Y.C. Zhou, Electrodiffusion of lipids on membrane surfaces. J. Chem. Phys. 136, 205103 (2012)CrossRefGoogle Scholar
  162. 162.
    Y.C. Zhou, B. Lu, A.A. Gorfe, Continuum electromechanical modeling of protein-membrane interactions. Phys. Rev. E 82(4), 041923 (2010)CrossRefGoogle Scholar
  163. 163.
    J. Zimmerberg, M.M. Kozlov, How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7, 9–19 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.Department of MathematicsMichigan State UniversityEast LansingUSA
  2. 2.Department of MathematicsColorado State UniversityFort CollinsUSA

Personalised recommendations