Advertisement

Self-consistent Field Theory of Inhomogeneous Polymeric Systems

  • An-Chang ShiEmail author
Chapter
Part of the Molecular Modeling and Simulation book series (MMAS)

Abstract

Using a binary polymer blend as a model system, we provide a detailed derivation of the self-consistent field theory (SCFT) of inhomogeneous polymeric systems in canonical and grand-canonical ensembles. Starting from a particle-based description of the polymers, the partition function of the system is transformed to a field-theoretical description. Evaluating the partition function using a saddle-point approximation leads to a set of SCFT equations and a SCFT free energy functional of the system. The SCFT free energy functional can be used to describe the phases and phase transitions of inhomogeneous polymeric systems such as polymer blends and block copolymer melts.

Keywords

Partition Function Block Copolymer Polymer Blend Free Energy Density Functional Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is supported by the Natural Science and Engineering Research Council (NSERC) of Canada.

References

  1. 1.
    F.S. Bates, G.H. Fredrickson, Phys. Today 52, 32 (1999)CrossRefGoogle Scholar
  2. 2.
    S. Edwards, Proc. Phys. Soc. 85, 613 (1965)MathSciNetCrossRefGoogle Scholar
  3. 3.
    E. Helfand, J. Chem. Phys. 62, 999 (1975); Macromolecules 8, 552 (1975)Google Scholar
  4. 4.
    K.M. Hong, J. Noolandi, Macromolecules 14, 727 (1981)CrossRefGoogle Scholar
  5. 5.
    M.D. Whitmore, J.D. Vavasour, Acta Polymerica 46, 341–360 (1995); F. Schmid, J. Phys. Condens. Matter 10, 8105–8138 (1998); M.W. Matsen, J. Condens. Matter 14, R21–R47 (2002)Google Scholar
  6. 6.
    A.C. Shi, in Development in Block Copolymer Science and Technology, ed. by I.W. Hamley (Wiley, New York, 2004); M.W. Matsen, in Soft Matter, ed. by G. Gomper, M. Schick (Wiley, New York, 2006); G.H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Oxford University Press, Oxford, 2006)Google Scholar
  7. 7.
    E. Helfand, Z.R. Wasserman, Macromolecules 9, 879 (1976)CrossRefGoogle Scholar
  8. 8.
    K.R. Shull, Macromolecules 25, 2122 (1992)CrossRefGoogle Scholar
  9. 9.
    J.D. Vavasour, M.W. Whitmore, Macromolecules 25, 5477 (1992); M. Banaszak, M.W. Whitmore, Macromolecules 25, 3406 (1992)Google Scholar
  10. 10.
    M.W. Matsen, M. Schick, Phys. Rev. Lett. 72, 2041 (1994)CrossRefGoogle Scholar
  11. 11.
    W. Xu, K. Jiang, P.W. Zhang, A.C. Shi, J. Phys. Chem. B 117, 5296–5305 (2013)CrossRefGoogle Scholar
  12. 12.
    A.-C. Shi, J. Noolandi, R.C. Desai, Macromolecules 29, 6487 (1996); A.-C. Shi, J. Phys. Condens. Matter 11, 10183 (1999)Google Scholar
  13. 13.
    F. Drolet, G.H. Fredrickson, Phys. Rev. Lett. 83, 4317 (1999); Y. Bohbot-Raviv, Wang, Phys. Rev. Lett. 85, 3428 (2000)Google Scholar
  14. 14.
    K.T. Delaney, G.H. Fredrickson, J. Phys. Chem. B 120, 7615–7634 (2016)Google Scholar
  15. 15.
    P.G. de Gennes, J. Chem. Phys. 72, 4756 (1980)MathSciNetCrossRefGoogle Scholar
  16. 16.
    H. Tang, K.F. Freed, J. Chem. Phys. 94, 1572 (1991)CrossRefGoogle Scholar
  17. 17.
    L. Leibler, Macromolecules 13, 1602 (1980); T. Ohta, K. Kawasaki, Macromolecules 19, 2621 (1986)Google Scholar
  18. 18.
    J.F. Joanny, L. Leibler, J. Phys. (Paris) 39, 951 (1978)CrossRefGoogle Scholar
  19. 19.
    H. Tang, K.F. Freed, J. Chem. Phys. 94, 6307 (1991)CrossRefGoogle Scholar
  20. 20.
    E. Helfand, Y. Tagami, J. Chem. Phys. 56, 3592 (1972)CrossRefGoogle Scholar
  21. 21.
    Z. Wu, B. Li, Q. Jin, D. Ding, A.-C. Shi, J. Phys. Chem. B 114, 15789–15798 (2010)CrossRefGoogle Scholar
  22. 22.
    W. Song, P. Tang, H. Zhang, Y. Yang, A.-C. Shi, Macromolecules 42, 6300–6309 (2009)CrossRefGoogle Scholar
  23. 23.
    A.-C. Shi, J. Noolandi, Macrol. Theory Simul. 8, 214–229 (1999)CrossRefGoogle Scholar
  24. 24.
    A.N. Semenov, Sov. Phys. - JETP 61, 733 (1985)Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.Department of Physics and AstronomyMcMaster UniversityHamiltonCanada

Personalised recommendations