Skip to main content

Variational Perturbation Theory for Electrolyte Solutions

  • Chapter
  • First Online:
Variational Methods in Molecular Modeling

Part of the book series: Molecular Modeling and Simulation ((MMAS))

Abstract

In most approaches to the statistical mechanics, the focus is on the particles in the system, where the partition function is given as an integral over their positions and orientations. In this chapter, we consider a field theoretic perspective, where the focus is on the interaction fields generated by the particles in the system, rather than the particles themselves. This approach has some advantages in that it can account for the large scale fluctuations in the system with natural approximation schemes. The two that are considered in this work are the mean-field approximation and variational perturbation theory. For electrolyte solutions, this leads naturally to the Poisson-Boltzmann theory and its improved modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975)

    MATH  Google Scholar 

  2. T.L. Hill, Statistical Mechanics: Principles and Selected Applications (McGraw-Hill, New York, 1956)

    MATH  Google Scholar 

  3. R.L. Stratonovich, Dokl. Akad. Nauk SSSR 115(6), 1097 (1957)

    MathSciNet  Google Scholar 

  4. J. Hubbard, Phys. Rev. Lett. 3, 77 (1959). doi:10.1103/PhysRevLett. 3.77

    Article  Google Scholar 

  5. A.L. Kholodenko, A.L. Beyerlein, Phys. Rev. A 43(4), 3309 (1986)

    Article  Google Scholar 

  6. R.D. Coalson, A. Duncan, J. Chem. Phys. 97(8), 5653 (1992). doi:10.1063/1.463950

    Article  Google Scholar 

  7. R.R. Netz, Phys. Rev. E 60(3), 3174 (1999)

    Article  Google Scholar 

  8. L. Lue, Fluid Phase Equil. 241, 236 (2006). doi:10.1016/j.fluid.2005.11.007

    Article  Google Scholar 

  9. J. Mahanty, B.W. Ninham, Dispersion Forces (Academic Press, London, 1976)

    Google Scholar 

  10. M.M. Hatlo, L. Lue, Soft Matter 4, 1582 (2008). doi:10.1039/B803783C

    Article  Google Scholar 

  11. R.R. Netz, Eur. Phys. J. E 3(2), 131 (2000)

    Article  Google Scholar 

  12. R.R. Netz, Eur. Phys. J. E 5, 189 (2001)

    Article  Google Scholar 

  13. M.M. Hatlo, R.A. Curtis, L. Lue, J. Chem. Phys. 128(16), 164717 (2008). doi:10.1063/1.2908738

    Article  Google Scholar 

  14. L. Lue, N. Zoeller, D. Blankschtein, Langmuir 15(11), 3726 (1999). doi:10.1021/la9813376

    Article  Google Scholar 

  15. D.S. Dean, R.R. Horgan, Phys. Rev. E 69(6), 061603 (2004). doi:10.1103/PhysRevE.69.061603

    Article  MathSciNet  Google Scholar 

  16. A.M. Walsh, R.D. Coalson, J. Chem. Phys. 100(2), 1559 (1994)

    Article  Google Scholar 

  17. N. Ben-Tal, R.D. Coalson, J. Chem. Phys. 101(6), 5148 (1994). doi:10.1063/1.467371

    Article  Google Scholar 

  18. H. Kleinert, Path Integrals in Quatum Mechanics, Statistics, and Polymer Physics, 2nd edn. (World Scientific, Singapore, 1995)

    Book  MATH  Google Scholar 

  19. Y. Levin, Rep. Prog. Phys. 65, 1577 (2002). doi:10.1088/0034-4885/65/11/201

    Article  Google Scholar 

  20. R.A. Curtis, L. Lue, J. Chem. Phys. 123, 174702 (2005). doi:10.1063/1.2102890

    Article  Google Scholar 

  21. R.A. Curtis, L. Lue, Curr Opin. Colloid Interface Sci. 20(1), 19 (2015). doi:10.1016/j.cocis.2014.12.001

    Article  Google Scholar 

  22. S. Buyukdagli, M. Manghi, J. Palmeri, Phys. Rev. E 81(4), 041601 (2010)

    Article  Google Scholar 

  23. S. Buyukdagli, C.V. Achim, T. Ala-Nissila, J. Chem. Phys. 137(10), 104902 (2012)

    Article  Google Scholar 

  24. M.M. Hatlo, A. Karatrantos, L. Lue, Phys. Rev. E 80(6), 061107 (2009). doi:10.1103/PhysRevE.80.061107

    Article  Google Scholar 

  25. M.M. Hatlo, L. Lue, Soft Matter 5, 125 (2009). doi:10.1039/b815578j

    Article  Google Scholar 

  26. M.M. Hatlo, L. Lue, EPL (Europhys. Lett.) 89(2), 25002 (2010). doi:10.1209/0295-5075/89/25002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Lue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Lue, L. (2017). Variational Perturbation Theory for Electrolyte Solutions. In: Wu, J. (eds) Variational Methods in Molecular Modeling. Molecular Modeling and Simulation. Springer, Singapore. https://doi.org/10.1007/978-981-10-2502-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2502-0_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2500-6

  • Online ISBN: 978-981-10-2502-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics