Classical Density Functional Theory for Molecular Systems

  • Jianzhong WuEmail author
Part of the Molecular Modeling and Simulation book series (MMAS)


Classical density functional theory (DFT) is able to predict the structural and thermodynamic properties of complex molecular systems with accuracy comparable to that inherited from semi-empirical force fields but at a computational cost up to several orders of magnitude lower than molecular simulations. In combination with first-principles methods, in particular with the Kohn-Sham DFT calculations for electronic properties, classical DFT opens up exciting opportunities for the development and validation of customized molecular models for chemicals design and discovery including high-throughput screening of nanostructured materials, solvents and electrolytes. This chapter provides a tutorial introduction of the basic concepts of the classical DFT in the context of multiscale modeling that aims to predict the rich behavior of molecular systems under diverse thermodynamic environments. A special emphasis is placed on various quantitative structure-property relationships for inhomogeneous molecular systems based on semi-empirical molecular models or force fields, microscopic structure, and inter- as well as intra-molecular correlation functions. Several mathematical procedures are outlined for the derivation of density functionals that are able to accurately account for thermodynamic non-ideality with atomistic details.


Density Profile External Potential Site Density Polyatomic Molecule Molecular Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.V. Akimov, O.V. Prezhdo, Large-scale computations in chemistry: a bird’s eye view of a vibrant field. Chem. Rev. 115, 5797–5890 (2015)CrossRefGoogle Scholar
  2. 2.
    A.S. Christensen, T. Kubar, Q. Cui, M. Elstner, Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications. Chem. Rev. 116, 5301–5337 (2016)CrossRefGoogle Scholar
  3. 3.
    T. Bereau, D. Andrienko, K. Kremer, Research update: computational materials discovery in soft matter. APL Mater. 4, 053101 (2016)CrossRefGoogle Scholar
  4. 4.
    M.W. van der Kamp, A.J. Mulholland, Combined Quantum Mechanics/Molecular Mechanics (QM/MM) methods in computational enzymology. Biochemistry 52, 2708–2728 (2013)CrossRefGoogle Scholar
  5. 5.
    R.O. Jones, Density functional theory: its origins, rise to prominence, and future. Rev. Mod. Phys. 87, 897–923 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    A.R. Leach, Molecular Modelling: Principles and Applications, 2nd edn. (Prentice Hall, Harlow, England, New York, 2001)Google Scholar
  7. 7.
  8. 8.
    S.L. Mayo, B.D. Olafson, W.A. Goddard, Dreiding—a generic force-field for molecular simulations. J. Phys. Chem.-Us 94, 8897–8909 (1990)CrossRefGoogle Scholar
  9. 9.
    A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, Uff, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)CrossRefGoogle Scholar
  10. 10.
    T. Düren, L. Sarkisov, O.M. Yaghi, R.Q. Snurr, Design of new materials for methane storage. Langmuir 20, 2683–2689 (2004)CrossRefGoogle Scholar
  11. 11.
    K.S. Walton, R.Q. Snurr, Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. J. Am. Chem. Soc. 129, 8552–8556 (2007)CrossRefGoogle Scholar
  12. 12.
    S. Keskin, J. Liu, R.B. Rankin, J.K. Johnson, D.S. Sholl, Progress, opportunities, and challenges for applying atomically detailed modeling to molecular adsorption and transport in metal-organic framework materials. Ind. Eng. Chem. Res. 48, 2355–2371 (2009)CrossRefGoogle Scholar
  13. 13.
    R. Huey, G.M. Morris, A.J. Olson, D.S. Goodsell, A semiempirical free energy force field with charge-based desolvation. J. Comput. Chem. 28, 1145–1152 (2007)CrossRefGoogle Scholar
  14. 14.
    T.P. Senftle, S. Hong, M.M. Islam, S.B. Kylasa, Y. Zheng, Y.K. Shin, C. Junkermeier, R. Engel-Herbert, M.J. Janik, H.M. Aktulga, T. Verstraelen, A. Grama, A.C. vanDuin, The ReaxFF reactive force-field: development, applications and future directions. Comput. Mater. 2, Artn 15011 (2016)Google Scholar
  15. 15.
    A.D. Becke, Perspective: Fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140, Artn 18a301 (2014)Google Scholar
  16. 16.
    K. Berland, V.R. Cooper, K. Lee, E. Schroder, T. Thonhauser, P. Hyldgaard, B.I. Lundqvist, van der Waals forces in density functional theory: a review of the vdW-DF method. Rep. Prog. Phys. 78, Artn 066501 (2015)Google Scholar
  17. 17.
    L.P. Wang, T.J. Martinez, V.S. Pande, Building force fields: an automatic, systematic and reproducible approach. J. Phys. Chem. Lett. 5, 1885–1891 (2014)CrossRefGoogle Scholar
  18. 18.
    S. Grimme, A General Quantum Mechanically Derived Force Field (QMDFF) for molecules and condensed phase simulations. J. Chem. Theory Comput. 10, 4497–4514 (2014)CrossRefGoogle Scholar
  19. 19.
    S.W. Rick, S.J. Stuart, Potentials and algorithms for incorporating polarizability in computer simulations. Rev. Comput. Chem. 18, 89–146 (2002)Google Scholar
  20. 20.
    M.G. Saunders, G.A. Voth, Coarse-graining methods for computational biology. Annu. Rev. Biophys. 42, 73–93 (2013)CrossRefGoogle Scholar
  21. 21.
    C.G. Gray, K.E. Gubbins, C.G. Joslin, Theory of Molecular Fluids: Fundamentals (Oxford University Press, Oxford, New York, 1984)Google Scholar
  22. 22.
    C.G. Gray, K.E. Gubbins, C.G. Joslin, Theory of Molecular Fluids II: Applications (Oxford University Press, Oxford, New York, 2011)Google Scholar
  23. 23.
    J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, 3rd edn. (Academic Press, London, 2006)zbMATHGoogle Scholar
  24. 24.
    D. Chandler, Structure of molecular liquids. Annu. Rev. Phys. Chem. 29, 441–471 (1978)CrossRefGoogle Scholar
  25. 25.
    E.L. Ratkova, D.S. Palmer, M.V. Fedorov, Solvation thermodynamics of organic molecules by the molecular integral equation theory: approaching chemical accuracy. Chem. Rev. 115, 6312–6356 (2015)CrossRefGoogle Scholar
  26. 26.
    J.L.F. Abascal, C. Vega, A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123 (2005)Google Scholar
  27. 27.
    S.H. Chong, S. Ham, Aqueous interaction site integral-equation theory that exactly takes into account intramolecular correlations. J. Chem. Phys. 137, Artn 154101 (2012)Google Scholar
  28. 28.
    C. Ebner, W.F. Saam, D. Stroud, Density-functional theory of simple classical fluids. 1. surfaces. Phys. Rev. A 14, 2264–2273 (1976)CrossRefGoogle Scholar
  29. 29.
    R. Evans, Nature of the liquid-vapor interface and other topics in the statistical-mechanics of nonuniform, classical fluids. Adv. Phys. 28, 143–200 (1979)CrossRefGoogle Scholar
  30. 30.
    R. Evans, in Fundamentals of Inhomogeneous Fluids, ed. by D. Henderson, M. Dekker (New York, 1992), pp. 85–175Google Scholar
  31. 31.
    Y. Singh, Density-functional theory of freezing and properties of the ordered phase. Phys. Rep. 207, 351–444 (1991)CrossRefGoogle Scholar
  32. 32.
    H.T. Davis, Statistical Mechanics of Phases, Interfaces, and Thin Films (VCH, New York, 1996)zbMATHGoogle Scholar
  33. 33.
    A.P. Hughes, A.J. Archer, U. Thiele, An introduction to inhomogeneous liquids, density functional theory, and the wetting transition. Am. J. Phys. 82, 1119–1129 (2014)CrossRefGoogle Scholar
  34. 34.
    G. Jeanmairet, N. Levy, M. Levesque, D. Borgis, Introduction to classical density functional theory by a computational experiment. J. Chem. Educ. 91, 2112–2115 (2014)CrossRefGoogle Scholar
  35. 35.
    G. Jeanmairet, M. Levesque, V. Sergiievskyi, D. Borgis, in Computational Trends in Solvation and Transport in Liquids, vol. 28, ed. by G. Sutmann, J. Grotendorst, G. Gompper, D. Marx (Schriften des Forschungszentrums Jülich, 2015)Google Scholar
  36. 36.
    S. Sokolowski, J. Ilnytskyi, O. Pizio, Description of interfaces of fluid-tethered chains: advances in density functional theories and off-lattice computer simulations. Condens. Matter Phys. 17, Artn 12601 (2014)Google Scholar
  37. 37.
    M. Schmidt, M. Burgis, W.S.B. Dwandaru, G. Leithall, P. Hopkins, Recent developments in classical density functional theory: Internal energy functional and diagrammatic structure of fundamental measure theory. Condens. Matter Phys. 15, Article number 43603 (2012)Google Scholar
  38. 38.
    C.P. Emborsky, Z.Z. Feng, K.R. Cox, W.G. Chapman, Recent advances in classical density functional theory for associating and polyatomic molecules. Fluid Phase Equilibr. 306, 15–30 (2011)CrossRefGoogle Scholar
  39. 39.
    J. Forsman, R. Szparaga, S. Nordholm, C.E. Woodward, R. Penfold, in Ionic Liquids—Classes and Properties, ed. by S.T. Handy (2011), pp. 127–150.
  40. 40.
    J.F. Lutsko, Recent developments in classical density functional theory. Adv. Chem. Phys. 144, 1–92 (2010)Google Scholar
  41. 41.
    J.Z. Wu, Z.D. Li, Density-functional theory for complex fluids. Annu. Rev. Phys. Chem. 58, 85–112 (2007)CrossRefGoogle Scholar
  42. 42.
    J.Z. Wu, Density functional theory for chemical engineering: from capillarity to soft materials. Aiche J. 52, 1169–1193 (2006)CrossRefGoogle Scholar
  43. 43.
    D.W. Oxtoby, Density functional methods in the statistical mechanics of materials. Annu. Rev. Mater. Res. 32, 39–52 (2002)CrossRefGoogle Scholar
  44. 44.
    L.J.D. Frink, A.G. Salinger, M.P. Sears, J.D. Weinhold, A.L. Frischknecht, Numerical challenges in the application of density functional theory to biology and nanotechnology. J. Phys.-Condens. Matter 14, 12167–12187 (2002)CrossRefGoogle Scholar
  45. 45.
    H. Lowen, Density functional theory of inhomogeneous classical fluids: recent developments and new perspectives. J. Phys.-Condens. Matter 14, 11897–11905 (2002)CrossRefGoogle Scholar
  46. 46.
    P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)MathSciNetCrossRefGoogle Scholar
  47. 47.
    N.D. Mermin, Thermal properties of the inhomogeneous electron gas. Phys. Rev. 137, A1441–1443 (1965)MathSciNetCrossRefGoogle Scholar
  48. 48.
    R.G. Parr, W. Yang, Density-functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)Google Scholar
  49. 49.
    D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. (Academic Press, San Diego, 2002)zbMATHGoogle Scholar
  50. 50.
    G.H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Oxford University Press, New York, 2006)zbMATHGoogle Scholar
  51. 51.
    D.P. Cao, T. Jiang, J. Z. Wu, A hybrid method for predicting the microstructure of polymers with complex architecture: Combination of single-chain simulation with density functional theory. J. Chem. Phys. 124, Artn 164904 (2006)Google Scholar
  52. 52.
    X.F. Xu, D.P. Cao, X.R. Zhang, W.C. Wang, Universal version of density-functional theory for polymers with complex architecture. Phys. Rev. E 79, Artn 021805 (2009)Google Scholar
  53. 53.
    S. Zhao, R. Ramirez, R. Vuilleumier, D. Borgis, Molecular density functional theory of solvation: from polar solvents to water. J. Chem. Phys. 134, 194102 (2011)CrossRefGoogle Scholar
  54. 54.
    G. Jeanmairet, N. Levy, M. Levesque, D. Borgis, Molecular density functional theory of water including density-polarization coupling. J. Phys.: Condens. Matter 28, 244005 (2016)Google Scholar
  55. 55.
    R. Ramirez, M. Mareschal, D. Borgis, Direct correlation functions and the density functional theory of polar solvents. Chem. Phys. 319, 261–272 (2005)CrossRefGoogle Scholar
  56. 56.
    D. Chandler, L.R. Pratt, Statistical-mechanics of chemical-equilibria and intramolecular structures of nonrigid molecules in condensed phases. J. Chem. Phys. 65, 2925–2940 (1976)CrossRefGoogle Scholar
  57. 57.
    M.S. Wertheim, Thermodynamic perturbation-theory of polymerization. J. Chem. Phys. 87, 7323–7331 (1987)CrossRefGoogle Scholar
  58. 58.
    D. Chandler, J.D. McCoy, S.J. Singer, Density functional theory of nonuniform polyatomic systems. 1. General formulation. J. Chem. Phys. 85, 5971–5976 (1986)CrossRefGoogle Scholar
  59. 59.
    D. Chandler, H.C. Andersen, Optimized cluster expansions for classical fluids. 2. Theory of molecular liquids. J. Chem. Phys. 57, 1930–1937 (1972)CrossRefGoogle Scholar
  60. 60.
    Y. Rosenfeld, Free energy model for inhomogeneous fluid mixtures: Yukawa-charged hard spheres, general interactions, and plasmas. J. Chem. Phys. 98, 8126–8148 (1993)CrossRefGoogle Scholar
  61. 61.
    Y.X. Yu, J.Z. Wu, Structures of hard-sphere fluids from a modified fundamental-measure theory. J. Chem. Phys. 117, 10156–10164 (2002)CrossRefGoogle Scholar
  62. 62.
    R. Roth, R. Evans, A. Lang, G. Kahl, Fundamental measure theory for hard-sphere mixtures revisited: the White Bear version. J. Phys.: Condens. Matter 14, 12063–12078 (2002)Google Scholar
  63. 63.
    F. Lado, S.M. Foiles, N.W. Ashcroft, Solutions of the reference-hypernetted-chain equation with minimized free energy. Phys. Rev. A 28, 2374–2379 (1983)CrossRefGoogle Scholar
  64. 64.
    G. Kahl, B. Bildstein, Y. Rosenfeld, Structure and thermodynamics of binary liquid mixtures: universality of the bridge functional. Phys. Rev. E 54, 5391 (1996)CrossRefGoogle Scholar
  65. 65.
    Y. Rosenfeld, Structure and effective interactions in multi-component hard-sphere liquids: the fundamental-measure density functional approach. J. Phys.: Condens. Matter 14, 9141–9152 (2002)Google Scholar
  66. 66.
    J.Z. Wu, T. Jiang, D.E. Jiang, Z.H. Jin, D. Henderson, A classical density functional theory for interfacial layering of ionic liquids. Soft Matter 7, 11222–11231 (2011)CrossRefGoogle Scholar
  67. 67.
    Y. Liu, J. Fu, J. Wu, High-throughput prediction of the hydration free energies of small molecules from a classical density functional theory. J. Phys. Chem. Lett. 4, 3687–3691 (2013)CrossRefGoogle Scholar
  68. 68.
    Y. Liu, J.Z. Wu, Structure and thermodynamic properties of relativistic electron gases. Phys. Rev. E 90, Artn 012141 (2014)Google Scholar
  69. 69.
    Y. Liu, J.Z. Wu, An improved classical mapping method for homogeneous electron gases at finite temperature. J. Chem. Phys. 141, Artn 064115 (2014)Google Scholar
  70. 70.
    A. Chakraborty, M.V. Pak, S. Hammes-Schiffer, Development of electron-proton density functionals for multicomponent density functional theory. Phys. Rev. Lett. 101, Artn 153001 (2008)Google Scholar
  71. 71.
    J. Landers, G.Y. Gor, A.V. Neimark, Density functional theory methods for characterization of porous materials. Colloid Surface A 437, 3–32 (2013)CrossRefGoogle Scholar
  72. 72.
    J. Jiang, D.P. Cao, D. Henderson, J. Z. Wu, Revisiting density functionals for the primitive model of electric double layers. J. Chem. Phys. 140, Artn 44714 (2014)Google Scholar
  73. 73.
    L.J.D. Frink , A.L. Frischknecht, Density functional theory approach for coarse-grained lipid bilayers. Phys. Rev. E 72, Artn 041923 (2005)Google Scholar
  74. 74.
    S. Singh, Phase transitions in liquid crystals. Phys. Rep. 324, 108–269 (2000)CrossRefGoogle Scholar
  75. 75.
    J. Fu, J.Z. Wu, Toward high-throughput predictions of the hydration free energies of small organic molecules from first principles. Fluid Phase Equilibr. 407, 304–313 (2016)CrossRefGoogle Scholar
  76. 76.
    J. Fu, Y. Liu, J. Z. Wu, Molecular density functional theory for multiscale modeling of hydration free energy. Chem. Eng. Sci. 126, 370–382 (2015)Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.Department of Chemical and Environmental Engineering and Department of MathematicsUniversity of CaliforniaRiversideUSA

Personalised recommendations