Skip to main content

Classical Density Functional Theory for Molecular Systems

  • Chapter
  • First Online:
Book cover Variational Methods in Molecular Modeling

Part of the book series: Molecular Modeling and Simulation ((MMAS))

Abstract

Classical density functional theory (DFT) is able to predict the structural and thermodynamic properties of complex molecular systems with accuracy comparable to that inherited from semi-empirical force fields but at a computational cost up to several orders of magnitude lower than molecular simulations. In combination with first-principles methods, in particular with the Kohn-Sham DFT calculations for electronic properties, classical DFT opens up exciting opportunities for the development and validation of customized molecular models for chemicals design and discovery including high-throughput screening of nanostructured materials, solvents and electrolytes. This chapter provides a tutorial introduction of the basic concepts of the classical DFT in the context of multiscale modeling that aims to predict the rich behavior of molecular systems under diverse thermodynamic environments. A special emphasis is placed on various quantitative structure-property relationships for inhomogeneous molecular systems based on semi-empirical molecular models or force fields, microscopic structure, and inter- as well as intra-molecular correlation functions. Several mathematical procedures are outlined for the derivation of density functionals that are able to accurately account for thermodynamic non-ideality with atomistic details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The electron mass is 1/1836 of that for proton, the lightest nuclear particle. As a result, most of the atomic mass is concentrated in the nucleus.

  2. 2.

    Class II and III force fields contain cubic and/or quartic terms in the potential energy for bond lengths and angles.

  3. 3.

    While quantum mechanics is used in a conventional statistical-mechanical model of polyatomic ideal gases to describe atomic motions, bond stretching and vibrations, a semi-empirical force field assumes that atoms are classical particles moving with the constraints of intramolecular potentials. As a result, a semi-empirical force field is not able to describe the ideal-gas heat capacity.

References

  1. A.V. Akimov, O.V. Prezhdo, Large-scale computations in chemistry: a bird’s eye view of a vibrant field. Chem. Rev. 115, 5797–5890 (2015)

    Article  Google Scholar 

  2. A.S. Christensen, T. Kubar, Q. Cui, M. Elstner, Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications. Chem. Rev. 116, 5301–5337 (2016)

    Article  Google Scholar 

  3. T. Bereau, D. Andrienko, K. Kremer, Research update: computational materials discovery in soft matter. APL Mater. 4, 053101 (2016)

    Article  Google Scholar 

  4. M.W. van der Kamp, A.J. Mulholland, Combined Quantum Mechanics/Molecular Mechanics (QM/MM) methods in computational enzymology. Biochemistry 52, 2708–2728 (2013)

    Article  Google Scholar 

  5. R.O. Jones, Density functional theory: its origins, rise to prominence, and future. Rev. Mod. Phys. 87, 897–923 (2015)

    Article  MathSciNet  Google Scholar 

  6. A.R. Leach, Molecular Modelling: Principles and Applications, 2nd edn. (Prentice Hall, Harlow, England, New York, 2001)

    Google Scholar 

  7. https://en.wikipedia.org/wiki/Force_field_(chemistry)

  8. S.L. Mayo, B.D. Olafson, W.A. Goddard, Dreiding—a generic force-field for molecular simulations. J. Phys. Chem.-Us 94, 8897–8909 (1990)

    Article  Google Scholar 

  9. A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, Uff, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)

    Article  Google Scholar 

  10. T. Düren, L. Sarkisov, O.M. Yaghi, R.Q. Snurr, Design of new materials for methane storage. Langmuir 20, 2683–2689 (2004)

    Article  Google Scholar 

  11. K.S. Walton, R.Q. Snurr, Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. J. Am. Chem. Soc. 129, 8552–8556 (2007)

    Article  Google Scholar 

  12. S. Keskin, J. Liu, R.B. Rankin, J.K. Johnson, D.S. Sholl, Progress, opportunities, and challenges for applying atomically detailed modeling to molecular adsorption and transport in metal-organic framework materials. Ind. Eng. Chem. Res. 48, 2355–2371 (2009)

    Article  Google Scholar 

  13. R. Huey, G.M. Morris, A.J. Olson, D.S. Goodsell, A semiempirical free energy force field with charge-based desolvation. J. Comput. Chem. 28, 1145–1152 (2007)

    Article  Google Scholar 

  14. T.P. Senftle, S. Hong, M.M. Islam, S.B. Kylasa, Y. Zheng, Y.K. Shin, C. Junkermeier, R. Engel-Herbert, M.J. Janik, H.M. Aktulga, T. Verstraelen, A. Grama, A.C. vanDuin, The ReaxFF reactive force-field: development, applications and future directions. Comput. Mater. 2, Artn 15011 (2016)

    Google Scholar 

  15. A.D. Becke, Perspective: Fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140, Artn 18a301 (2014)

    Google Scholar 

  16. K. Berland, V.R. Cooper, K. Lee, E. Schroder, T. Thonhauser, P. Hyldgaard, B.I. Lundqvist, van der Waals forces in density functional theory: a review of the vdW-DF method. Rep. Prog. Phys. 78, Artn 066501 (2015)

    Google Scholar 

  17. L.P. Wang, T.J. Martinez, V.S. Pande, Building force fields: an automatic, systematic and reproducible approach. J. Phys. Chem. Lett. 5, 1885–1891 (2014)

    Article  Google Scholar 

  18. S. Grimme, A General Quantum Mechanically Derived Force Field (QMDFF) for molecules and condensed phase simulations. J. Chem. Theory Comput. 10, 4497–4514 (2014)

    Article  Google Scholar 

  19. S.W. Rick, S.J. Stuart, Potentials and algorithms for incorporating polarizability in computer simulations. Rev. Comput. Chem. 18, 89–146 (2002)

    Google Scholar 

  20. M.G. Saunders, G.A. Voth, Coarse-graining methods for computational biology. Annu. Rev. Biophys. 42, 73–93 (2013)

    Article  Google Scholar 

  21. C.G. Gray, K.E. Gubbins, C.G. Joslin, Theory of Molecular Fluids: Fundamentals (Oxford University Press, Oxford, New York, 1984)

    Google Scholar 

  22. C.G. Gray, K.E. Gubbins, C.G. Joslin, Theory of Molecular Fluids II: Applications (Oxford University Press, Oxford, New York, 2011)

    Google Scholar 

  23. J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, 3rd edn. (Academic Press, London, 2006)

    MATH  Google Scholar 

  24. D. Chandler, Structure of molecular liquids. Annu. Rev. Phys. Chem. 29, 441–471 (1978)

    Article  Google Scholar 

  25. E.L. Ratkova, D.S. Palmer, M.V. Fedorov, Solvation thermodynamics of organic molecules by the molecular integral equation theory: approaching chemical accuracy. Chem. Rev. 115, 6312–6356 (2015)

    Article  Google Scholar 

  26. J.L.F. Abascal, C. Vega, A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123 (2005)

    Google Scholar 

  27. S.H. Chong, S. Ham, Aqueous interaction site integral-equation theory that exactly takes into account intramolecular correlations. J. Chem. Phys. 137, Artn 154101 (2012)

    Google Scholar 

  28. C. Ebner, W.F. Saam, D. Stroud, Density-functional theory of simple classical fluids. 1. surfaces. Phys. Rev. A 14, 2264–2273 (1976)

    Article  Google Scholar 

  29. R. Evans, Nature of the liquid-vapor interface and other topics in the statistical-mechanics of nonuniform, classical fluids. Adv. Phys. 28, 143–200 (1979)

    Article  Google Scholar 

  30. R. Evans, in Fundamentals of Inhomogeneous Fluids, ed. by D. Henderson, M. Dekker (New York, 1992), pp. 85–175

    Google Scholar 

  31. Y. Singh, Density-functional theory of freezing and properties of the ordered phase. Phys. Rep. 207, 351–444 (1991)

    Article  Google Scholar 

  32. H.T. Davis, Statistical Mechanics of Phases, Interfaces, and Thin Films (VCH, New York, 1996)

    MATH  Google Scholar 

  33. A.P. Hughes, A.J. Archer, U. Thiele, An introduction to inhomogeneous liquids, density functional theory, and the wetting transition. Am. J. Phys. 82, 1119–1129 (2014)

    Article  Google Scholar 

  34. G. Jeanmairet, N. Levy, M. Levesque, D. Borgis, Introduction to classical density functional theory by a computational experiment. J. Chem. Educ. 91, 2112–2115 (2014)

    Article  Google Scholar 

  35. G. Jeanmairet, M. Levesque, V. Sergiievskyi, D. Borgis, in Computational Trends in Solvation and Transport in Liquids, vol. 28, ed. by G. Sutmann, J. Grotendorst, G. Gompper, D. Marx (Schriften des Forschungszentrums Jülich, 2015)

    Google Scholar 

  36. S. Sokolowski, J. Ilnytskyi, O. Pizio, Description of interfaces of fluid-tethered chains: advances in density functional theories and off-lattice computer simulations. Condens. Matter Phys. 17, Artn 12601 (2014)

    Google Scholar 

  37. M. Schmidt, M. Burgis, W.S.B. Dwandaru, G. Leithall, P. Hopkins, Recent developments in classical density functional theory: Internal energy functional and diagrammatic structure of fundamental measure theory. Condens. Matter Phys. 15, Article number 43603 (2012)

    Google Scholar 

  38. C.P. Emborsky, Z.Z. Feng, K.R. Cox, W.G. Chapman, Recent advances in classical density functional theory for associating and polyatomic molecules. Fluid Phase Equilibr. 306, 15–30 (2011)

    Article  Google Scholar 

  39. J. Forsman, R. Szparaga, S. Nordholm, C.E. Woodward, R. Penfold, in Ionic Liquids—Classes and Properties, ed. by S.T. Handy (2011), pp. 127–150. http://www.intechopen.com

  40. J.F. Lutsko, Recent developments in classical density functional theory. Adv. Chem. Phys. 144, 1–92 (2010)

    Google Scholar 

  41. J.Z. Wu, Z.D. Li, Density-functional theory for complex fluids. Annu. Rev. Phys. Chem. 58, 85–112 (2007)

    Article  Google Scholar 

  42. J.Z. Wu, Density functional theory for chemical engineering: from capillarity to soft materials. Aiche J. 52, 1169–1193 (2006)

    Article  Google Scholar 

  43. D.W. Oxtoby, Density functional methods in the statistical mechanics of materials. Annu. Rev. Mater. Res. 32, 39–52 (2002)

    Article  Google Scholar 

  44. L.J.D. Frink, A.G. Salinger, M.P. Sears, J.D. Weinhold, A.L. Frischknecht, Numerical challenges in the application of density functional theory to biology and nanotechnology. J. Phys.-Condens. Matter 14, 12167–12187 (2002)

    Article  Google Scholar 

  45. H. Lowen, Density functional theory of inhomogeneous classical fluids: recent developments and new perspectives. J. Phys.-Condens. Matter 14, 11897–11905 (2002)

    Article  Google Scholar 

  46. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  MathSciNet  Google Scholar 

  47. N.D. Mermin, Thermal properties of the inhomogeneous electron gas. Phys. Rev. 137, A1441–1443 (1965)

    Article  MathSciNet  Google Scholar 

  48. R.G. Parr, W. Yang, Density-functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)

    Google Scholar 

  49. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. (Academic Press, San Diego, 2002)

    MATH  Google Scholar 

  50. G.H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Oxford University Press, New York, 2006)

    MATH  Google Scholar 

  51. D.P. Cao, T. Jiang, J. Z. Wu, A hybrid method for predicting the microstructure of polymers with complex architecture: Combination of single-chain simulation with density functional theory. J. Chem. Phys. 124, Artn 164904 (2006)

    Google Scholar 

  52. X.F. Xu, D.P. Cao, X.R. Zhang, W.C. Wang, Universal version of density-functional theory for polymers with complex architecture. Phys. Rev. E 79, Artn 021805 (2009)

    Google Scholar 

  53. S. Zhao, R. Ramirez, R. Vuilleumier, D. Borgis, Molecular density functional theory of solvation: from polar solvents to water. J. Chem. Phys. 134, 194102 (2011)

    Article  Google Scholar 

  54. G. Jeanmairet, N. Levy, M. Levesque, D. Borgis, Molecular density functional theory of water including density-polarization coupling. J. Phys.: Condens. Matter 28, 244005 (2016)

    Google Scholar 

  55. R. Ramirez, M. Mareschal, D. Borgis, Direct correlation functions and the density functional theory of polar solvents. Chem. Phys. 319, 261–272 (2005)

    Article  Google Scholar 

  56. D. Chandler, L.R. Pratt, Statistical-mechanics of chemical-equilibria and intramolecular structures of nonrigid molecules in condensed phases. J. Chem. Phys. 65, 2925–2940 (1976)

    Article  Google Scholar 

  57. M.S. Wertheim, Thermodynamic perturbation-theory of polymerization. J. Chem. Phys. 87, 7323–7331 (1987)

    Article  Google Scholar 

  58. D. Chandler, J.D. McCoy, S.J. Singer, Density functional theory of nonuniform polyatomic systems. 1. General formulation. J. Chem. Phys. 85, 5971–5976 (1986)

    Article  Google Scholar 

  59. D. Chandler, H.C. Andersen, Optimized cluster expansions for classical fluids. 2. Theory of molecular liquids. J. Chem. Phys. 57, 1930–1937 (1972)

    Article  Google Scholar 

  60. Y. Rosenfeld, Free energy model for inhomogeneous fluid mixtures: Yukawa-charged hard spheres, general interactions, and plasmas. J. Chem. Phys. 98, 8126–8148 (1993)

    Article  Google Scholar 

  61. Y.X. Yu, J.Z. Wu, Structures of hard-sphere fluids from a modified fundamental-measure theory. J. Chem. Phys. 117, 10156–10164 (2002)

    Article  Google Scholar 

  62. R. Roth, R. Evans, A. Lang, G. Kahl, Fundamental measure theory for hard-sphere mixtures revisited: the White Bear version. J. Phys.: Condens. Matter 14, 12063–12078 (2002)

    Google Scholar 

  63. F. Lado, S.M. Foiles, N.W. Ashcroft, Solutions of the reference-hypernetted-chain equation with minimized free energy. Phys. Rev. A 28, 2374–2379 (1983)

    Article  Google Scholar 

  64. G. Kahl, B. Bildstein, Y. Rosenfeld, Structure and thermodynamics of binary liquid mixtures: universality of the bridge functional. Phys. Rev. E 54, 5391 (1996)

    Article  Google Scholar 

  65. Y. Rosenfeld, Structure and effective interactions in multi-component hard-sphere liquids: the fundamental-measure density functional approach. J. Phys.: Condens. Matter 14, 9141–9152 (2002)

    Google Scholar 

  66. J.Z. Wu, T. Jiang, D.E. Jiang, Z.H. Jin, D. Henderson, A classical density functional theory for interfacial layering of ionic liquids. Soft Matter 7, 11222–11231 (2011)

    Article  Google Scholar 

  67. Y. Liu, J. Fu, J. Wu, High-throughput prediction of the hydration free energies of small molecules from a classical density functional theory. J. Phys. Chem. Lett. 4, 3687–3691 (2013)

    Article  Google Scholar 

  68. Y. Liu, J.Z. Wu, Structure and thermodynamic properties of relativistic electron gases. Phys. Rev. E 90, Artn 012141 (2014)

    Google Scholar 

  69. Y. Liu, J.Z. Wu, An improved classical mapping method for homogeneous electron gases at finite temperature. J. Chem. Phys. 141, Artn 064115 (2014)

    Google Scholar 

  70. A. Chakraborty, M.V. Pak, S. Hammes-Schiffer, Development of electron-proton density functionals for multicomponent density functional theory. Phys. Rev. Lett. 101, Artn 153001 (2008)

    Google Scholar 

  71. J. Landers, G.Y. Gor, A.V. Neimark, Density functional theory methods for characterization of porous materials. Colloid Surface A 437, 3–32 (2013)

    Article  Google Scholar 

  72. J. Jiang, D.P. Cao, D. Henderson, J. Z. Wu, Revisiting density functionals for the primitive model of electric double layers. J. Chem. Phys. 140, Artn 44714 (2014)

    Google Scholar 

  73. L.J.D. Frink , A.L. Frischknecht, Density functional theory approach for coarse-grained lipid bilayers. Phys. Rev. E 72, Artn 041923 (2005)

    Google Scholar 

  74. S. Singh, Phase transitions in liquid crystals. Phys. Rep. 324, 108–269 (2000)

    Article  Google Scholar 

  75. J. Fu, J.Z. Wu, Toward high-throughput predictions of the hydration free energies of small organic molecules from first principles. Fluid Phase Equilibr. 407, 304–313 (2016)

    Article  Google Scholar 

  76. J. Fu, Y. Liu, J. Z. Wu, Molecular density functional theory for multiscale modeling of hydration free energy. Chem. Eng. Sci. 126, 370–382 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Wu, J. (2017). Classical Density Functional Theory for Molecular Systems. In: Wu, J. (eds) Variational Methods in Molecular Modeling. Molecular Modeling and Simulation. Springer, Singapore. https://doi.org/10.1007/978-981-10-2502-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2502-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2500-6

  • Online ISBN: 978-981-10-2502-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics