Advertisement

Square-Gradient Model for Inhomogeneous Systems: From Simple Fluids to Microemulsions, Polymer Blends and Electronic Structure

  • Jianzhong WuEmail author
Chapter
Part of the Molecular Modeling and Simulation book series (MMAS)

Abstract

The square-gradient approximation for describing the thermodynamic and structural properties of inhomogeneous systems was first proposed many years ago by van der Waals in his celebrated work on capillarity. Because it entails no a priori knowledge on inter-particle interactions, the mathematical procedure is generically applicable to a wide variety of seemingly unrelated phenomena, regardless of whether the system contains classical or quantum particles. This chapter presents a few common concepts underlying different incarnations of the square-gradient model for simple fluids, microemulsions, polymer blends as well as electronic systems. Pedagogical examples are given to illustrate its applications to describing the physical properties of various inhomogeneous systems including surface tensions, x-ray scattering from microemulsions, and spinodal decomposition in polymer blends. By emphasizing similar ideas used in different subfields of statistical mechanics, the tutorial material may help better understand connections among similar theoretical methods established in different contexts.

Keywords

Monte Carlo Vertex Function Inhomogeneous System Uniform System Helmholtz Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author is indebted to Dr. Liu Yu for comments and suggestions. For the financial support, we are grateful to the U.S. National Science Foundation (NSF-CBET-1404046).

References

  1. 1.
    D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, New York, 1987) p. xiii, 274 pGoogle Scholar
  2. 2.
    R. Feynman, Statistical Mechanics: A Set of Lectures 2 edition ed. (Westview Press, 1998)Google Scholar
  3. 3.
    D.P. Landau, K. Binder, A guide to Monte Carlo Simulations in Statistical Physics, 3rd ed. (Cambridge University Press, Cambridge, New York, 2009), p. xv, 471 pGoogle Scholar
  4. 4.
    J.S. Rowlinson, Development of theories of inhomogeneous fluids, in Fundamentals of Inhomogeneous Fluids, ed. by D. Henderson (Marcel Dekker, New York, 1992), pp. 1–22Google Scholar
  5. 5.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864–B871 (1964)MathSciNetCrossRefGoogle Scholar
  6. 6.
    N.D. Mermin, Phys. Rev. 137(5A), A1441–1443 (1965)MathSciNetCrossRefGoogle Scholar
  7. 7.
    R. Evans, Adv. Phys. 28(2), 143–200 (1979)CrossRefGoogle Scholar
  8. 8.
    A.D. Becke, J. Chem. Phys. (USA) 140(18) (2014)Google Scholar
  9. 9.
    J.Z. Wu, Z.D. Li, Annu. Rev. Phys. Chem. 58, 85–112 (2007)CrossRefGoogle Scholar
  10. 10.
    R. Evans, Density functionals in the theory of nonuniform fluids, in Fundamentals of Inhomogeneous Fluids, ed. by D. Henderson (Marcel Dekker, New York, 1992), pp. 85–175Google Scholar
  11. 11.
    J.Z. Wu, Density functional theory for liquid structure and thermodynamics. Struct. Bond 131, 1–73 (2009)CrossRefGoogle Scholar
  12. 12.
    P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, New York, NY, USA, 1995) p. xx, 699 pGoogle Scholar
  13. 13.
    K. Lum, D. Chandler, J.D. Weeks, J. Phys. Chem. B 103, 4570–4577 (1999)CrossRefGoogle Scholar
  14. 14.
    J.M. Prausnitz, R.N. Lichtenthaler, E.G.D. Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd edn. (Upper Saddle River, N.J, Prentice-Hall PTR, 1999)Google Scholar
  15. 15.
    Y. Tang, J. Chem. Phys. (USA) 127(16) (2007)Google Scholar
  16. 16.
    J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity, Dover ed. (Dover Publications, Mineola, N.Y., 2002) p. xi, 327 pGoogle Scholar
  17. 17.
    J.M. Garrido, M. Piñeiro, F. Blas, E. Muller, A. Mejia, AIChE J. (2016) In pressGoogle Scholar
  18. 18.
    C. Solans, H. Kunieda, Industrial Applications of Microemulsions (M. Dekker, New York, 1997) p. ix, 404 pGoogle Scholar
  19. 19.
    G. Kaur, L. Chiappisi, S. Prevost, R. Schweins, M. Gradzielski, S.K. Mehta, Langmuir 28(29), 10640–10652 (2012)CrossRefGoogle Scholar
  20. 20.
    P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, N.Y., 1979)Google Scholar
  21. 21.
    C.P. Brangwynne, P. Tompa, R.V. Pappu, Nat. Phys. 11(11), 899–904 (2015)CrossRefGoogle Scholar
  22. 22.
    A. Brunswick, T.J. Cavanaugh, D. Mathur, A.P. Russo, E.B. Nauman, J. Appl. Polym. Sci. 68(2), 339–343 (1998)CrossRefGoogle Scholar
  23. 23.
    W. Kohn, L.J. Sham, Phys. Rev. 140(4A), A1133–A1138 (1965)MathSciNetCrossRefGoogle Scholar
  24. 24.
    D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45(7), 566–569 (1980)CrossRefGoogle Scholar
  25. 25.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865–3868 (1996)CrossRefGoogle Scholar
  26. 26.
    A.D. Becke, J. Chem. Phys. (USA) 98(7), 5648–5652 (1993)Google Scholar
  27. 27.
    C.T. Lee, W.T. Yang, R.G. Parr, Phys. Rev. B 37(2), 785–789 (1988)CrossRefGoogle Scholar
  28. 28.
    G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, UK, New York, 2005) p. xix, 777 pGoogle Scholar
  29. 29.
    R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)Google Scholar
  30. 30.
    E. Engel, Dreizler (An Advanced Course, R.M., Density Functional Theory, 2011)Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.Department of Chemical and Environmental Engineering and Department of MathematicsUniversity of CaliforniaRiversideUSA

Personalised recommendations