Skip to main content

Basic Models of Computational Mass Transfer

  • Chapter
  • First Online:
Introduction to Computational Mass Transfer

Part of the book series: Heat and Mass Transfer ((HMT))

  • 1444 Accesses

Abstract

The computational mass transfer (CMT) aims to find the concentration profile in a process equipment, which is the most important basis for evaluating the process efficiency, as well as, the effectiveness of an existing mass transfer equipment. This chapter is dedicated to the description of the fundamentals and the recently published models of CMT for obtaining simultaneously the concentration, velocity and temperature distributions. The challenge is the closure of the differential species conservation equation for the mass transfer in turbulent flow. Two models are presented. The first is a two-equation model termed as \(\overline{{c^{\prime 2} }} - \varepsilon_{{c^{\prime}}}\) model, which is based on the Boussinesq postulate by introducing an isotropic turbulent mass transfer diffusivity. The other is the Reynolds mass flux model, in which the variable covariant term in the equation is modeled and computed directly, and so it is anisotropic and rigorous. Both methods are proved to be validated by comparing with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\({c}\) :

Instantaneous mass concentration of species \(i\), kg m−3

Molar concentration of species \(i\) in Sect. 1.4.2, mol s−3

\({c}_{\text{t}}\) :

Total molar concentration of component i per m3, mol m−3

C :

Time average concentration, kg m−3

C + :

Dimensionless concentration

c′:

Fluctuating concentration, kg m−3

\(\overline{{{c}^{\prime 2} }}\) :

Variance of fluctuating concentration, kg2 m−6

D :

Molecular diffusivity, m2 s−1

D e :

Effective mass diffusivity, m2 s−1

D t :

Isotropic turbulent mass diffusivity, m2 s−1

\({\mathbf{D}}_{\text{t}}\) :

Anisotropic turbulent mass diffusivity, m2 s−1

g :

Gravity acceleration, m s−2

[I]:

Identity matrix, dimensionless

J w :

Mass flux at wall surface, kg m−2 s−1

k :

Fluctuating kinetic energy, m2 s−2

Mass transfer coefficient, m s−1

[k]:

Matrix of mass transfer coefficients, m s−1

l :

Characteristic length, m

p′:

Fluctuating pressure, kg m−1 s−2

P :

Time average pressure, kg m−1 s−2

Pe:

Peclet number

r c :

Ratio of fluctuating velocity dissipation time and fluctuating concentration dissipation time

S :

Source term

Sc :

Schmidt number

Sc t :

Turbulent Schmidt number

t :

Time, s

\(T^{\prime}\) :

Fluctuating temperature, K

\(\overline{{T^{\prime 2} }}\) :

Variance of fluctuating temperature, K2

T :

Time average temperature, K

u :

Instantaneous velocity of species i, m s−1

u′:

Fluctuating velocity, m s−1

u τ :

Frictional velocity, m s−1

u + :

Dimensionless velocity, m s−1

U, V, W :

Time average velocity in three directions, m s−1

y + :

Dimensionless distance, m

α t :

Turbulent thermal diffusivity, m−1 s−1

δ :

Thickness of fluid film, m

ε :

Dissipation rate of turbulent kinetic energy, m2 s−3

ε c :

Dissipation rate of concentration variance, kg2 m−6 s−1

ε t :

Dissipation rate of temperature variance, K2 s−1

μ :

Viscosity, kg m−1 s−1

μ t :

Turbulent viscosity, kg m−1 s−1

\(\nu_{\text{e}}\) :

Effective turbulent diffusivity, m2 s−1

ρ :

Density, kg m−3

τ μ , τ c , τ m :

Characteristic time scale, s

τ w :

Near wall stress, kg m−1 s−2

References

  1. Liu BT (2003) Study of a new mass transfer model of CFD and its application on distillation tray. Ph.D. Dissertation, Tianjin University, Tianjin, China (in Chinese)

    Google Scholar 

  2. Sun ZM (2005) Study on computational mass transfer in chemical engineering. Ph.D. Dissertation, Tianjin University, Tianjin, China (in Chinese)

    Google Scholar 

  3. Sun ZM, Liu BT, Yuan XG, Yu KT (2005) New turbulent model for computational mass transfer and its application to a commercial-scale distillation column. Ind Eng Chem Res 44(12):4427–4434

    Article  CAS  Google Scholar 

  4. Sun ZM, Yu KT, Yuan XG, Liu CJ (2007) A modified model of computational mass transfer for distillation column. Chem Eng Sci 62:1839–1850

    Article  CAS  Google Scholar 

  5. Liu GB (2006) Computational transport and its application to mass transfer and reaction processes in pack-beds. Ph.D. Dissertation, Tianjin University, Tianjin, China (in Chinese)

    Google Scholar 

  6. Liu GB, Yu KT, Yuan XG, Liu CJ, Guo QC (2006) Simulations of chemical absorption in pilot-scale and industrial-scale packed columns by computational mass transfer. Chem Eng Sci 61:6511–6529

    Article  CAS  Google Scholar 

  7. Liu GB, Yu KT, Yuan XG, Liu CJ (2006) New model for turbulent mass transfer and its application to the simulations of a pilot-scale randomly packed column for CO2-NaOH chemical absorption. Ind Eng Chem Res 45:3220–3229

    Article  CAS  Google Scholar 

  8. Liu GB, Yu KT, Yuan XG, Liu CJ (2008) A computational transport model for wall-cooled catalytic reactor. Ind Eng Chem Res 47:2656–2665

    Article  CAS  Google Scholar 

  9. Liu GB, Yu KT, Yuan XG, Liu CJ (2009) A numerical method for predicting the performance of a randomly packed distillation column. Int J Heat Mass Transf 52:5330–5338

    Article  CAS  Google Scholar 

  10. Li WB, Liu BT, Yu KT, Yuan XG (2011) A rigorous model for the simulation of gas adsorption and its verification. Ind Eng Chem Res 50(13):8361–8370

    Google Scholar 

  11. Sun ZM, Liu CJ, Yu GC, Yuan XG (2011) Prediction of distillation column performance by computational mass transfer method. Chin J Chem Eng 19(5):833–844

    Article  CAS  Google Scholar 

  12. Lemoine F, Antoine Y, Wolff M et al (2000) Some experimental investigations on the concentration variance and its dissipation rate in a grid generated turbulent flow. Int J Heat Mass Transf 43(7):1187–1199

    Article  Google Scholar 

  13. Spadling DB (1971) Concentration fluctuations in a round turbulent free jet. Chem Eng Sci 26:95

    Article  Google Scholar 

  14. Launder BE, Samaraweera SA (1979) Application of a second-moment turbulence closure to heat and mass transport in thin shear flows—two-dimensional transport. Int J Heat Mass Transf 22:1631–1643

    Article  Google Scholar 

  15. Sommer TP, So MRC (1995) On the modeling of homogeneous turbulence in a stably stratified flow. Phys Fluids 7:2766–2777

    Article  CAS  Google Scholar 

  16. Sherwood TK, Pigford RL, Wilke CR (1975) Mass transfer. McGraw Hill, New York

    Google Scholar 

  17. Cai TJ, Chen GX (2004) Liquid back-mixing on distillation trays. Ind Eng Chem Res 43(10):2590–2597

    Article  CAS  Google Scholar 

  18. Comini G, Del Giudice S (1985) A k-e model of turbulent flow. Numer Heat Transf 8:299–316

    Article  Google Scholar 

  19. Patankar SV, Sparrow EM, Ivanovic M (1978) Thermal interactions among the confining walls of a turbulent recirculating flow. Int J Heat Mass Transf 21(3):269–274

    Article  Google Scholar 

  20. Tavoularis S, Corrsin S (1981) Experiments in nearly homogenous turbulent shear-flow with a uniform mean temperature-gradient. J Fluid Mech 104 (MAR):311–347

    Google Scholar 

  21. Ferchichi M, Tavoularis S (2002) Scalar probability density function and fine structure in uniformly sheared turbulence. J Fluid Mech 461:155–182

    Article  Google Scholar 

  22. Sun ZM, Liu CT, Yuan XG, Yu KT (2006) Measurement and numerical simulation of concentration distribution on sieve tray. J Chem Ind Eng (China) 57(8):1878–1883

    Google Scholar 

  23. Chen CJ, Jaw SY (1998) Fundamentals of turbulence modeling. Taylor and Francis

    Google Scholar 

  24. Jone CJ, Launder BE (1973) The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. Int J Heat Mass Transf 16:1119–1130

    Article  Google Scholar 

  25. Khalil EE, Spalading DB, Whitelaw JH (1975) Calculation of local flow properties in 2-dimensional furnaces. Int J Heat Mass Transf 18:775–791

    Article  CAS  Google Scholar 

  26. Li WB, Liu BT, Yu KT, Yuan XG (2011) A new model for the simulation of distillation column. Chin J Chem Eng 19(5):717–725

    Article  CAS  Google Scholar 

  27. Li WB (2012) Theory and application of computational mass transfer for chemical engineering processes. Ph.D. dissertation, Tianjin University, Tianjin

    Google Scholar 

  28. Gesit G, Nandakumar K, Chuang KT (2003) CFD modeling of flow patterns and hydraulics of commercial-scale sieve trays. AIChE J 49:910

    Article  CAS  Google Scholar 

  29. Krishna R, van Baten JM, Ellenberger J (1999) CFD simulations of sieve tray hydrodynamics. Trans IChemE 77 Part A (10):639–646

    Google Scholar 

  30. Solari RB, Bell RL (1986) Fluid flow patterns and velocity distribution on commercial-scale sieve trays. AIChE J 32:640

    Article  CAS  Google Scholar 

  31. Wang XL, Liu CT, Yuan XG, Yu KT (2004) Computational fluid dynamics simulation of three-dimensional liquid flow and mass transfer on distillation column trays. Ind Eng Chem Res 43(10):2556–2567

    Google Scholar 

  32. Auton TR, Hunt JCR, Prud’homme M (1988) The force exerted on a body in inviscid unsteady non-uniform rotational flow. J Fluid Mech 197:241

    Article  Google Scholar 

  33. Krishna R, Urseanu MI, Van Baten JM et al (1999) Rise velocity of a swarm of large gas bubbles in liquids. Chem Eng Sci 54:171–183

    Google Scholar 

  34. Yu KT, Yuan XG, You XY, Liu CJ (1999) Computational fluid-dynamics and experimental verification of two-phase two-dimensional flow on a sieve column tray. Chem Eng Res Des 77A:554

    Article  Google Scholar 

  35. Colwell CJ (1979) Clear liquid height and froth density on sieve trays. Ind Eng Chem Proc Des Dev 20:298

    Article  Google Scholar 

  36. Bennet DL, Agrawal R, Cook PJ (1983) New pressure drop correlation for sieve tray distillation columns. AIChE J 29:434–442

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Tsung Yu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Yu, KT., Yuan, X. (2017). Basic Models of Computational Mass Transfer. In: Introduction to Computational Mass Transfer. Heat and Mass Transfer. Springer, Singapore. https://doi.org/10.1007/978-981-10-2498-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2498-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2497-9

  • Online ISBN: 978-981-10-2498-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics