Skip to main content

Magnetorheological Fluid Applications

  • Chapter
  • First Online:
Field Responsive Fluids as Smart Materials

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Potential applications of MR fluids are summarized in those devices that need quick, continuous, and reversible transformation in rheological characteristics [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carlson, J.D., Jolly, M.R.: MR fluid, foam and elastomer devices. Mechatronics 10, 555–569 (2000)

    Google Scholar 

  2. Olabi, A.G., Grunwald, A.: Design and application of magneto-rheological fluid. Mater. Des. 28(10), 2658–2664 (2007)

    Google Scholar 

  3. Butz, T., von Stryk, O.: Modelling and simulation of electro-and magnetorheological fluid dampers. ZAMM 82(1), 3–20 (2002)

    Google Scholar 

  4. Rabinow, J.: The magnetic fluid clutch. AIEE Trans. 67, 1308–1315 (1948)

    Google Scholar 

  5. Gabriel, C., Laun, H.M.: Combined slit and plate–plate magnetorheometry of a magnetorheological fluid (MRF) and parameterization using the Casson model. Rheol. Acta 48, 755–768 (2009)

    Google Scholar 

  6. Guerrero-Sanchez, C., Lara-Ceniceros, T., Jimenez-Regalado, E., Rasa, M., Schubert, U.S.: Magnetorheological fluids based on ionic liquids. Adv. Mater. 19, 1740–1747 (2007)

    Google Scholar 

  7. Carlson, J.D., Catanzarite, D.M., Clair, K.A. St: Commercial magnetorheological fluid devices. In: Bullogh, W.A. (eds.) Proceedings of the 5th International Conference on ER Fluids, MR Suspensions and Associated Technology, Singapore, pp. 20–28. World Scientific, Singapore (1996)

    Google Scholar 

  8. Carlson, J.D., Spencer, B.F., Jr.: Magneto-rheological fluid dampers for semi-active seismic control. In: Proceedings of the 3rd International Conference on Motion and Vibration, Control, pp. 35–40 (1996)

    Google Scholar 

  9. Carlson, J.D.: Magnetorheological fluid actuators. In: Janocha, H. (ed.) Adaptronics and Smart Structures. Springer, Berlin, pp. 180–195. ISBN 3-540-61484-2 (1999)

    Google Scholar 

  10. de Vicente, J., Klingenberg, D.J., Hidalgo-Alvarez, R.: Magnetorheological fluids: a review. Soft Matter 7(8), 3701–3710 (2011)

    Google Scholar 

  11. Jolly, M.R., Bender, J.W., Carlson, J.D.: Properties and applications of commercial magnetorheological fluids. J. Intell. Mater. Syst. Struct. 10(1), 5–13 (1999)

    Google Scholar 

  12. Shtarkman, E.M.: Fluid response to magnetic field. US Patient 4,992,190 (1991)

    Google Scholar 

  13. Shtarkman, E.M.: Fluid response to magnetic field. US Patient 5,167,850 (1992)

    Google Scholar 

  14. Pinkos, A., Shtarkman, E., Fitzgerald, T.: An actively damped passenger car suspension system with low voltage electro-rheological magnetic fluid. SAE Trans. J. Passeng. Cars 102-6(930268), 87–89 (1993)

    Google Scholar 

  15. Marathe, S., Gandhi, F., Wang, K.W.: Helicopter blade response and aeromechanical stability with amagnetorheological fluid based lag damper. In Regelbrugge, M.E. (ed.) Proceedings of the SPIE Conference of the International Society of Optical Engineers, vol. 3329. SPIE, Washington, pp. 390–401 (1998)

    Google Scholar 

  16. Carlson, J.D., Chrzan, M.J., James, F.O.: Magnetorheological fluid devices. US Patient 5,284,330 (1994)

    Google Scholar 

  17. Jolly, M.R., Chrzan, M.J.: Passive magnetorheological fluid device with excursion dependent characteristic. US Patient 5,947,238 (1999)

    Google Scholar 

  18. Carlson, J.D., Chrzan, M.J.: Magnetorheological fluid dampers. US Patient 5,277, 281 (1994)

    Google Scholar 

  19. Nakagawa, T., Yamada, A.: Design for a novel MRF semi active damper and certification of the nonlinear controller’s effects. IEEE Trans. Magn. 5, 3604–3606 (1999)

    Google Scholar 

  20. Huang, J., Zhang, J.Q., Yang, Y., Wei, Y.Q.: Analysis and design of a cylindrical magneto-rheological fluid brake. J. Mater. Process. Technol. 129, 559–562 (2002)

    Google Scholar 

  21. Huang, J., Wang, H.P., Ling, J., Wei, Y.Q., Zhang, J.Q.: Research on chain-model of the transmission mechanical property of the magneto-rheological fluids. Mach. Des. Manuf. Eng. 30(2), 3–7 (2001)

    Google Scholar 

  22. Sukhwani, V.K., Hirani, H.: A comparative study of magnetorheological-fluid-brake and magnetorheological-grease-brake. Tribology 3(1), 31–35 (2008)

    Google Scholar 

  23. Avraam, M.T.: MR-fluid brake design and its application to a portable muscular rehabilitation device. Doktora Tezi, Université Libre De Bruxelles, Faculté De Sciences Appliquées (2009)

    Google Scholar 

  24. Zainordin, A.Z., Abdullah, M.A., Hudha, K.: Experimental evaluations on braking responses of magnetorheological brake. Int. J. Min. Metall. Mech. Eng. 1(3), 195–199 (2013)

    Google Scholar 

  25. Karakoc, K.: Design of a magnetorheological brake system based on magnetic circuit optimization (Doctoral dissertation, University of Victoria) (2007)

    Google Scholar 

  26. Park, E.J., Stoikov, D., da Luz, L.F., Suleman, A.: A performance evaluation of an automotive magnetorheological brake design with a sliding mode controller. Mechatronics 16(7), 405–416 (2006)

    Google Scholar 

  27. Baranwal, D., Deshmukh, T.S.: MR-fluid technology and its application-a review. Int. J. Emerg. Technol. Adv. Eng. 2(12), 563–569 (2012)

    Google Scholar 

  28. Stanway, R., Sproston, J.L., El-Wahed, A.K.: Applications of electro-rheological fluids in vibration control: a survey. Smart Mater. Struct. 5(4), 464 (1996)

    Google Scholar 

  29. Lee, U., Kim, D., Hur, N., Jeon, D.: Design analysis and experimental evaluation of an MR fluid clutch. J. Intell. Mater. Syst. Struct. 10, 701–707 (1999)

    Google Scholar 

  30. Yalcintas, M.: Magnetorheological fluid based torque transmission clutches. In: Proceedings of the 9th International Offshore and Polar Engineering Conference (June), vol. 4, pp. 563–569 (1999)

    Google Scholar 

  31. Lampe, D., Thess, A., Dotzauer, C.: MRF-clutch-design considerations and performance. Transition 3, 10 (1998)

    Google Scholar 

  32. Neelakantan, V.A., Washington, G.: Modeling and reduction of centrifuging in magnetorheological (MR) transmission clutches for automotive applications. J. Intell. Mater. Syst. Struct. 16, 703–711 (2005)

    Google Scholar 

  33. Kavlicoglu, B.M., Gordaninejad, F., Evrensel, C.A., Cobanoglu, N., Liu, Y., Fuchs, A.: High-torque magnetorheological fluid clutch. In: Proceedings of the SPIE 4697, pp. 393–400 (2002)

    Google Scholar 

  34. Kavlicoglu, B.M., Gordaninejad, F., Evrensel, C., Fuchs, A., Korol, G.: A semi-active, high-torque, magnetorheological fluid limited slip differential clutch. J. Vib. Acoust. 128, 604–610 (2006)

    Google Scholar 

  35. Kieburg, C.: MR all-wheel-drive prototype car driving tests and durability requirements for the MR fluids used. Presented at International Conference of ERMR’08 (Dresden). www.mfd.mw.tu-dresden.de/ERMR08/abstracts/Kieburg.pdf (2008)

  36. Smith, A.L., Ulicny, J.C., Kennedy, L.C.: Magnetorheological fluid fan drive for trucks. J. Intell. Mater. Syst. Struct. 18(12), 1131–1136 (2007)

    Google Scholar 

  37. Kavlicoglu, B.M., Gordaninejad, F., Wang, X.: Study of a magnetorheological grease clutch. Smart Mater. Struct. 22, 125030 (2013)

    Google Scholar 

  38. Kordonsky, W.: Elements and devices based on magnetorheological effect. J. Intell. Mater. Syst. Struct. 4(1), 65–69 (1993)

    Google Scholar 

  39. Kordonsky, W.I.: Magnetorheological effect as a base of new devices and technologies. J. Magn. Magn. Mater. 122, 395–398 (1993)

    Google Scholar 

  40. Kordonsky, W.I., Gorodkin, S.R., Kolomentsev, A.V.: Magnetorheological valve and devices incorporating magnetorheological elements. US Patient 5,353,839 (1994)

    Google Scholar 

  41. Nguyen, Q.H., Choi, S.B., Wereley, N.M.: Optimal design of magnetorheological valves via a finite element method considering control energy and a time constant. Smart Mater. Struct. 17(2), 025024 (2008)

    Google Scholar 

  42. Kordonsky, W.I., Gorodkin, S.R., Kolomentsev, A.V.: Magnetorheological valve and devices incorporating magnetorheological elements. US Patient 5,452,745 (1995)

    Google Scholar 

  43. Nguyen, Q.H., Choi, S.B.: Optimal Design Methodology of Magnetorheological Fluid Based Mechanisms. INTECH Open Access Publisher (2012)

    Google Scholar 

  44. Kordonski, W.I., Golini, D.: Progress update in magnetorheological finishing. In: Nakano, M., Koyama, K. (eds.) Proceedings of the 6th International Conference on ER Fluids, MR Suspensions and Their Applications. World Scientific, Singapore, pp. 837–844 (1998)

    Google Scholar 

  45. Wang, J., Guangyao, M.: Magnetorheological fluid devices: principles, characteristics and applications in mechanical engineering. J. Mater. Des. Appl. 215(3), 165–174 (2001)

    Google Scholar 

  46. Jacobs, S.D.: Manipulating mechanics and chemistry in precision optics finishing. Sci. Technol. Adv. Mater. 8(3), 153–157 (2007)

    Google Scholar 

  47. Jha, S., Jain, V.K.: Modeling and simulation of surface roughness in magnetorheological abrasive flow finishing (MRAFF) process. Wear 261(7), 856–866 (2006)

    Google Scholar 

  48. Zhang, H., Wu, M., Gao, H.: The polishing technology of rigid and brittle material. In: A Conference Proceeding of Precision-Machined and Measure Technology in China (1999)

    Google Scholar 

  49. Pitschke, E., Sperber, P., Stamp, R., Smith, L.: Prediction of MRF polishing by classification of the initial error with Zemike polynomials. In: Dahl, M. (ed.) Proceedings of Ultra-Fast MTF Test for High-Volume Production of CMOS Imaging Cameras, p. 115. SPIE (2004)

    Google Scholar 

  50. Yan, Y., Boseon, K., Shiguo, H., Xing, C.: Glass polishing technology using MR fluids. J. Rare Earths 25, 367–369 (2007)

    Google Scholar 

  51. Kanno, T., Kouda, Y., Takeishi, Y., Minagawa, T., Yamamoto, Y.: Preparation of magnetic fluid having active-gas resistance and ultra-low vapor pressure for magnetic fluid vacuum seals. Tribol. Int. 30(9), 701–705 (1997)

    Google Scholar 

  52. Li, G., Du, C.B.: Study of sealing mechanism of a magneto-rheological damper. Mach. Des. Manuf. 7, 032 (2011)

    Google Scholar 

  53. Kordonsky, W.I., Gorodkin, S.R.: Magnetorheologicaluid based seal. In: Bullogh, W.A. (ed.) Proceedings of the 5th International Conference on ER Fluids, MR Suspensions and Associated Technology, pp. 704–709. Singapore (1996)

    Google Scholar 

  54. Fujita, T., Yoshimura, K., Seki, Y., Dodbiba, G., Miyazaki, T., Numakura, S.: Characterization of magnetorheological suspension for seal. J. Intell. Mater. Syst. Struct. 10(10), 770–774 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdollah Hajalilou , Saiful Amri Mazlan , Hossein Lavvafi or Kamyar Shameli .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd

About this chapter

Cite this chapter

Hajalilou, A., Amri Mazlan, S., Lavvafi, H., Shameli, K. (2016). Magnetorheological Fluid Applications. In: Field Responsive Fluids as Smart Materials. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-2495-5_5

Download citation

Publish with us

Policies and ethics