• Cheng-Lin LiuEmail author
  • Fei Liu
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)


Coordination control mechanism, which is a popular cooperative manner in spatially distributed multiple autonomous agents, has been playing important roles in many research fields including animal behavior, physics, biophysics, social sciences, computer science etc. Past decade has witnessed that coordination control of multi-agent system has stimulated more and more research interests for its broad engineering applications including sensor networks, formation control of unmanned vehicles, and air traffic control, etc.


Span Tree Communication Delay Consensus Problem Consensus Algorithm Input Delay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T. Vicsek, A. Zafeiris, Collective motion. Phys. Rep. 517(3–4), 71–140 (2012)CrossRefGoogle Scholar
  2. 2.
    A. Arenasa, A. Diaz-Guilera, J. Kurthsd, Y. Morenob, C. Zhou, Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    C.W. Reynolds, Flocks, herds, and schools: a distributed behavioral model. Comput. Graph. 21(4), 25–34 (1987)CrossRefGoogle Scholar
  4. 4.
    T. Vicsek, A. Czirok, E.B. Jacob, I. Cohen, O. Schochet, Novel type of phase transitions in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–1229 (1995)MathSciNetCrossRefGoogle Scholar
  5. 5.
    E.M. Izhikevich, Y. Kuramoto, Weakly coupled oscillators, Encyclopedia of Mathematical Physics (Elsevier Academic Press, San Diego, 2006)Google Scholar
  6. 6.
    R. Olfati-Saber, R. Murray, Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    A. Jadbabaie, J. Lin, A.S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    L. Moreau, Stability of multiagent systems with time-dependent communication links. IEEE Trans. Autom. Control 50(2), 169–182 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    W. Ren, R.W. Beard, Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50(5), 655–661 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    W. Ren, Y. Cao, Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues (Springer, London, 2011)zbMATHCrossRefGoogle Scholar
  11. 11.
    Z. Lin, B. Francis, M. Maggiore, Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans. Autom. Control 50(1), 121–127 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    C. Godsil, G. Royle, Algebraic Graph Theory. Graduate texts in mathematics, vol. 207 (Springer, New York, 2001)Google Scholar
  13. 13.
    D.P. Bertsekas, Distributed dynamic programming. IEEE Trans. Autom. Control 27(3), 610–616 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    J.N. Tsitsiklis, D.P. Bertsekas, M. Athans, Distrbuted asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans. Autom. Control 31(9), 803–812 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Y. Hong, J. Hu, L. Gao, Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42(7), 1177–1182 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    L. Wang, F. Xiao, Finite-time consensus problems for networks of dynamic agents. IEEE Trans. Autom. Control 55(4), 950–955 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    H. Bai, R.A. Freeman, K.M. Lynch. Robust dynamic average consensus of time-varying inputs, in 49th IEEE Conference on Decision and Control, Atlanta, Georgia, USA, December (2010), pp. 3104–3109Google Scholar
  18. 18.
    J. Seo, H. Shim, J. Back, Consensus of high-order linear systems using dynamic output feedback compensator: low gain approach. Automatica 45(11), 2659–2664 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Z. Li, Z. Duan, Cooperative Control of Multi-agent Systems: A Consensus Region Approach (Taylor & Francis / CRC Press, Boca Raton, 2014)CrossRefGoogle Scholar
  20. 20.
    U. Muenz, A. Papachristodoulou, F. Allgoewer, Delay robustness in consensus problems. Automatica 46(8), 1252–1265 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    L. Frank, H. Zhang, K. Hengster-Movric, A. Das, Cooperative Control of Multi-agent Systems: Optimal and Adaptive Design Approaches (Springer, London, 2014)zbMATHGoogle Scholar
  22. 22.
    I.C. Lestas, G. Vinnicombe, Scalable robust stability for nonsymmetric heterogeneous networks. Automatica 43(4), 714–723 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Y.P. Tian, Frequency-domain Analysis and Design of Distributed Control Systems (Wiley, Singapore, 2012)zbMATHCrossRefGoogle Scholar
  24. 24.
    Q. Hui, W. Haddad, Distributed nonlinear control algorithms for network consensus. Automatica 44(9), 2375–2381 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    S. Li, H. Du, X. Lin, Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica 47(8), 1706–1712 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    N. Chopra, M.W. Spong, Passivity-based control of multi-agent systems. Advances in Robot Control: from Everyday Physics to Human-like Movements (Springer, Berlin, 2006)Google Scholar
  27. 27.
    W. Sun, Y. Li, C. Li, Y. Chen, Convergence speed of a fractional order consensus algorithm over undirected scale-free networks. Asian J. Control 13(6), 936–946 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    X.R. Yang, G.P. Liu, Necessary and sufficient consensus conditions of descriptor multi-agent systems. IEEE Trans. Circuits Syst. I, Reg. Papers 59(11), 2669–2677 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    K. Peng, Y. Yang, Leader-following consensus problem with a varying-velocity leader and time-varying delays. Physica A 388(2–3), 193–208 (2009)CrossRefGoogle Scholar
  30. 30.
    S. Liu, L. Xie, H. Zhang, Distributed consensus for multi-agent systems with delays and noises in transmission channels. Automatica 47(5), 920–934 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    X. Liu, W. Lu, T. Chen, Consensus of multi-agent systems with unbounded time-varying delays. IEEE Trans. Autom. Control 55(10), 2396–2401 (2010)MathSciNetCrossRefGoogle Scholar
  32. 32.
    B. Yang, H. Fang, Forced consensus in networks of double integrator systems with delayed input. Automatica 46(3), 629–632 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Y.G. Sun, L. Wang, G.M. Xie, Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays. Syst. Control Lett. 57(2), 175–183 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    P. Lin, Y. Jia, Average consensus in networks of multi-agents with both switching topology and coupling time-delay. Physica A 387(1), 303–313 (2008)CrossRefGoogle Scholar
  35. 35.
    J. Qin, H. Gao, W.X. Zheng, Second-order consensus for multi-agent systems with switching topology and communication delay. Syst. Control Lett. 60(6), 390–397 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Y. Zhang, Y.P. Tian, Consensus of data-sampled multi-agent systems with random communication delay and packet loss. IEEE Trans. Autom. Control 55(4), 939–943 (2010)MathSciNetCrossRefGoogle Scholar
  37. 37.
    F. Xiao, L. Wang, State consensus for multi-agent systems with switching topologies and time-varying delays. Int. J. of Control 79(10), 1277–1284 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    P. Lin, Y. Jia, Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies. Automatica 45(9), 2154–2158 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    D.J. Lee, M.K. Spong, Agreement with non-uniform information delays, in 2006 American Control Conference, Minneapolis, MN, USA, June (2006), pp. 756–761Google Scholar
  40. 40.
    M. Cao, A.S. Morse, B.D.O. Anderson, Reaching a consensus in a dynamically changing environment: convergence rates, measurement delays, and asynchronous events. SIAM J. Control Optim. 47(2), 601–623 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    W. Wang, J.J.E. Slotine, Contraction analysis of time-delayed communications and group cooperation. IEEE Trans. Autom. Control 51(4), 712–717 (2006)MathSciNetCrossRefGoogle Scholar
  42. 42.
    U. Munz, A. Papachristodoulou, F. Allgoewer, Delay robustness in consensus problems. Automatica 46(8), 1252–1265 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    W. Yang, A.L. Bertozzi, X.F. Wang, Stability of a second order consensus algorithm with time delay. In 47th IEEE Conference on Decision and Control, Cancun, Mexico, pp. 2926-2931, December 2008Google Scholar
  44. 44.
    U. Muenz, A. Papachristodoulou, F. Allgoewer, Delay robustness in non-identical multi-agent systems. IEEE Trans. Autom. Control 57(6), 1597–1603 (2012)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Y.P. Tian, Y. Zhang, High-order consensus of heterogeneous multi-agent systems with unknown communication delays. Automatica 48(6), 1205–1212 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    C.L. Liu, Y.P. Tian, Formation control of multi-agent systems with heterogeneous communication delays. Int. J. Syst. Sci. 40(6), 627–636 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    W. Zhu, D. Cheng, Leader-following consensus of second-order agents with multiple time-varying delays. Automatica 46(12), 1994–1999 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    W. Zhu, Consensus of multiagent systems with switching jointly reachable interconnection and time delays. IEEE Trans. Syst., Cybern. A, Syst., Humans 42(2), 348-358 (2012)Google Scholar
  49. 49.
    E. Nuno, R. Ortega, L. Basanez, D. Hill, Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays. IEEE Trans. Autom. Control 56(4), 935–941 (2011)MathSciNetCrossRefGoogle Scholar
  50. 50.
    B. Zhou, Z. Lin, Consensus of high-order multi-agent systems with large input and communication delays. Automatica 50(2), 452–464 (2014)MathSciNetCrossRefGoogle Scholar
  51. 51.
    H. Su, W. Zhang, Second-order consensus of multiple agents with coupling delay. Commun. Theor. Phys. 51(1), 101–109 (2009)zbMATHCrossRefGoogle Scholar
  52. 52.
    Y.P. Tian, C.L. Liu, Consensus of multi-agent systems with diverse input and communication delays. IEEE Trans. Automat. Control 53(9), 2122–2128 (2008)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Y.P. Tian, C.L. Liu, Robust consensus of multi-agent systems with diverse input delays and asymmetric interconnection perturbations. Automatica 45(5), 1347–1353 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Z. Meng, W. Ren, Y. Cao, Z. You, Leaderless and leader-following consensus with communication and input delays under a directed network topology. IEEE Trans. Syst., Man, Cybern. B, Cybern. 41(1), 75–88 (2011)CrossRefGoogle Scholar
  55. 55.
    R. Cepeda-Gomez, N. Olgac, Exact stability analysis of second-order leaderless and leader-follower consensus protocols with rationally-independent multiple time delays. Syst. Control Lett. 62(6), 482–495 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    K. Pyragas, Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170(6), 421–428 (1992)CrossRefGoogle Scholar
  57. 57.
    Y.P. Tian, D. Xin, O. Tian, Stabilization of multi-agent systems via distributed difference feedback control. in The 9th Asian Control Conference, Istanbul, Turkey, June (2013), pp. 1–6Google Scholar
  58. 58.
    M. Krstic, Delay Compensation for Nonlinear, Adaptive, and PDE Systems (Birkhauser, Boston, 2009)zbMATHCrossRefGoogle Scholar
  59. 59.
    Z. Wu, H. Fang, Y. She, Weighted average prediction for improving consensus performance of second-order delayed multi-agent systems. IEEE Trans. Syst., Man, Cybern. B, Cybern. 42(5), 1501–1508 (2012)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Institute of AutomationJiangnan UniversityWuxiChina

Personalised recommendations