Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 507))

  • 1112 Accesses

Abstract

Functional magnetic resonance imaging (fMRI) is a safe non-invasive technique used for understanding the brain functions against various stimuli and hence to predict the brain disorders. The fMRI signal patterns and brain mapping have been found promising the medical science in the recent days. Adequate contributions have been made in the literature on fMRI signal analysis. This paper identifies notable research works that have contributed on fMRI signal analysis and predicting the brain functions and performs systematic review on them. The review provides the strengths and weaknesses, and the research gaps exist in the works based on 11 useful parameters, such as sparsity, non-linearity, robustness, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbé, K.; Van Moer, W.; Nagels, G., “Fractional-Order Time Series Models for Extracting the Haemodynamic Response From Functional Magnetic Resonance Imaging Data”, IEEE Transactions on Biomedical Engineering, Vol. 59, Issue 8, pp 2264-2272, 2012.

    Google Scholar 

  2. K. K. Kwong and D. A. Chesler, “Functional MRI,” in Medical Devices and Systems. Boca Raton: CRC Press, 2006, pp. 22–30.

    Google Scholar 

  3. Katwal, S.B.; Gore, J.C.; Marois, R.; Rogers, B.P., “Unsupervised Spatiotemporal Analysis of FMRI Data Using Graph-Based Visualizations of Self-Organizing Maps”, IEEE Transactions on Biomedical Engineering, Volume 60, Issue 9, pp 2472−2483, 2013.

    Google Scholar 

  4. Yuanqing Li; Namburi, P.; Zhuliang Yu; Cuntai Guan; Jianfeng Feng; Zhenghui Gu, “Voxel Selection in fMRI Data Analysis Based on Sparse Representation”, IEEE Transactions on Biomedical Engineering, Volume 56, Issue 10, pp 2439−2451, 2009.

    Google Scholar 

  5. Michel, V.; Gramfort, A.; Varoquaux, G.; Eger, E.; Thirion, B., “Total Variation Regularization for fMRI-Based Prediction of Behavior”, IEEE Transactions on Medical Imaging, Volume 30, Issue 7, pp 1328−1340, 2011.

    Google Scholar 

  6. C. Genovese, N. Lazar, and T. Nichols, “Thresholding of statistical maps in functional neuroimaging using the false discovery rate,” NeuroImage, Volume 15, pp. 870–878, 2002.

    Google Scholar 

  7. M. Lindquist, J. Loh, L. Atlas, and T. Wager, “Modeling the hemodynamic response function in fMRI: Efficiency, bias and mismodeling,” NeuroImage, Volume 45, no. 1, pp. S187–S196, 2009.

    Google Scholar 

  8. B. Hu, G. Varma, C. Randell, S. Keevil, T. Schaeffter, and P. Glover, “A novel receive-only liquid nitrogen (LN2)-cooled RF coil for high-resolution in vivo imaging on a 3-tesla whole-body scanner,” IEEE Transactions on Instrumentation and Measurement, Volume 61, Issue. 1, pp. 129–139, Jan. 2012.

    Google Scholar 

  9. S. Strother, “Evaluating fMRI preprocessing pipelines—Review of pre-processing steps for BOLD fMRI,” IEEE Engineering in Medicine and Biology Magazine, Volume 25, Issue 2, pp. 27–41, Mar./Apr. 2006.

    Google Scholar 

  10. D. A. Karras and G. B. Mertzios, “New PDE-based methods for image enhancement using SOM and Bayesian inference in various discretization schemes,” Measurement Science and Technology, Volume. 20, Issue 10, 2009.

    Google Scholar 

  11. V. Rallabandi and P. Roy, “Magnetic resonance image enhancement using stochastic resonance in Fourier domain,” Magnetic Resononance Imaging, Volume. 28, Issue 9, pp. 1361–1373, 2010.

    Google Scholar 

  12. X. Yang and B. Baowei Fei, “A wavelet multiscale denoising algorithm for magnetic resonance (MR) images,” Measurement Science and Technology, Volume 22, no. 2, 2011.

    Google Scholar 

  13. J. Sijbers, D. Poot, A. J. den Dekker, and W. Pintjens, “Automatic estimation of the noise variance from the histogram of a magnetic resonance image,”Physics in Medicine and Biology, Volume. 52, pp. 1335–1348, 2007.

    Google Scholar 

  14. C. Goutte, F. A. Nielsen, and L. K. Hansen, “Modeling the haemodynamic response in fMRI using smooth FIR filters,” IEEE Trans. Med. Imag., Volume 19, no. 12, pp. 1188–1201, Dec. 2000.

    Google Scholar 

  15. R. Gibbons, N. Lazar, D. Bhaumik, S. Sclove, H. Chen, K. Thulborn, J. Sweeney, K. Hur, and D. Patterson, “Estimation and classification of fMRI hemodynamic response patterns,” Neuroimage, vol. 22, pp. 804–814, 2004.

    Google Scholar 

  16. A. den Dekker, D. Poot, R. Bos, and J. Sijbers, “Likelihood-based hypothesis tests for brain activation detection from MRI data disturbed by colored noise: A simulation study,” IEEE Trans. Med. Imag., vol. 28, no. 2, pp. 287–296, Feb. 2009.

    Google Scholar 

  17. K. Barb´e, W. Van Moer, and L. Lauwers, “Functional magnetic resonance imaging: An improved short record signal model,” IEEE Trans. Instrum. Meas., vol. 60, no. 5, pp. 1724–1731, May 2011.

    Google Scholar 

  18. X. Descombes, F. Kruggel, and D. Y. von Cramon, “Spatio-temporal fMRI analysis using Markov random fields,” IEEE Trans. Med. Imag., vol. 17, no. 6, pp. 1028–1039, Dec. 1998.

    Google Scholar 

  19. M. Svens´en, F. Kruggel, and D. Y. von Cramen, “Probabilistic modeling of single trial fMRI data,” IEEE Trans. Med. Imag., vol. 19, no. 1, pp. 25–36, Jan. 2000.

    Google Scholar 

  20. S. Faisan, L. Thoraval, J. P. Armspach, J. R. Foucher, M. N. Metz-Lutz, and F. Heitz, “Hidden Markov event sequence models: Toward unspervised functional MRI brain,” Acad. Radiol., vol. 12, no. 1, pp. 25–36, Jan. 2005.

    Google Scholar 

  21. K. J. Friston, A. P. Holmes, K. J. Worsley, J. –P. Poline, C. D. Frith, and R. S. J. Frackowiak, “Statistical parametric maps in functional imaging: A general linear approach,” Human Brain Mapping, vol. 2, no. 4, pp. 189–210, 1994.

    Google Scholar 

  22. E. Zarahn, G. K. Aguirre, and M. D’Esposito, “Empirical analyses of BOLD fMRI statistics,” Neuroimage, vol. 5, no. 3, pp. 179–197, Apr. 1997.

    Google Scholar 

  23. L. K. Hansen, J. Larsen, F. A. Nielsen, S. C. Strother, E. Rostrup, R. Savoy, N. Lange, J. Sidtis, C. Svarer, and O. B. Paulson, “Generalizable patterns in neuroimaging: How many principal components,” Neuroimage, vol.9, no. 5, pp. 534–544, May 1999.

    Google Scholar 

  24. K. H. Chuang, M. H. Chiu, C.C. Lin, and J. H. Chen, “Model-free functional MRI analysis using Kohonen clustering neural network and fuzzy c-means,” IEEE Trans. Med. Imag., vol. 28, no. 12, pp. 1117–1128, Dec. 1999.

    Google Scholar 

  25. Jingyu Liu; Lai Xu; Caprihan, A.; Calhoun, V.D., “Extracting principle components for discriminant analysis of FMRI images”, IEEE International Conference on Acoustics, Speech and Signal Processing, 2008. ICASSP 2008, pp 449−452, 2008.

    Google Scholar 

  26. S.J. Peltier, T. A. Polk, and D. C. Noll, “Detecting low-frequency functional connectivity in fMRI using a self-organizing map (SOM) algorithm,” Human Brain Mapping, vol. 20, no. 4, pp. 220–226, Aug. 2003.

    Google Scholar 

  27. W. Liao, H. Chen, Q. Yang, and X. Lei, “Analysis of fMRI data using improved self-organizing map and spatio-temporal metric hierarchical clustering,” IEEE Trans. Med. Imag., vol. 27, no. 10, pp. 1472–1483, Oct. 2008.

    Google Scholar 

  28. H. Chen, H. Yuan, D. Yao, L. Chen, and W. Chen, “An integrated neighborhood correlation and hierarchical clustering approach of functional MRI,” IEEE Trans. Biomed. Eng., vol. 53, no. 3, pp. 452–458, Mar. 2006.

    Google Scholar 

  29. Chiew, M.; Graham, S.J.; “BOLD Contrast and Noise Characteristics of Densely Sampled Multi-Echo fMRI Data, IEEE Transactions on Medical Imaging, Vol. 30, No. 9, pp. 1691–1703, 2011.

    Google Scholar 

  30. M. J. McKeown, S. Makeig, G. G. Brown, T. P. Jung, S. S. Kindermann, A. J. Bell, and T. J. Sejnowski, “Analysis of fMRI data by blind separation into independent spatial components,” Human Brain Mapping, vol.6, no. 3, pp. 160–188, 1998.

    Google Scholar 

  31. Honorio, J.; Tomasi, D.; Goldstein, R.Z.; Leung, H.-C.; Samaras, D., “Can a Single Brain Region Predict a Disorder?”, IEEE Transactions on Medical Imaging, Volume 31, Issue: 11, pp 2062−2072, 2012.

    Google Scholar 

  32. Chaari, L.; Vincent, T.; Forbes, F.; Dojat, M.; Ciuciu, P, “Fast Joint Detection-Estimation of Evoked Brain Activity in Event-Related fMRI Using a Variational Approach”, IEEE Transactions on Medical Imaging, Vol. 32, Issue 5, pp 821−837, 2013.

    Google Scholar 

  33. Fan Deng; Dajiang Zhu; Jinglei Lv; Lei Guo; Tianming Liu, “FMRI Signal Analysis Using Empirical Mean Curve Decomposition”, IEEE Transactions on Biomedical Engineering, Volume 60, Issue 1, Part: 1, pp 42−54, 2013.

    Google Scholar 

  34. Babak Afshin-Pour, Seyed-Mohammad Shams, and Stephen Strother, “A Hybrid LDA + gCCA Model for fMRI Data Classification and Visualisation”, IEEE Transactions on Medical Imaging, Volume PP, Issue 99, pp 1–12, 2014.

    Google Scholar 

  35. Chun-An Chou; Kampa, K.; Mehta, S.H.; Tungaraza, R.F.; Chaovalitwongse, W.A.; Grabowski, T.J., “Voxel Selection Framework in Multi-Voxel Pattern Analysis of fMRI Data for Prediction of Neural Response to Visual Stimuli”, IEEE Transactions on Medical Imaging, Volume 33, Issue 4, pp 925−934, 2014.

    Google Scholar 

  36. A. N. Paithane and D. S. Bormane. “Analysis of nonlinear and non-stationary signal to extract the features using Hilbert Huang transform.” Computational Intelligence and Computing Research (ICCIC), 2014 IEEE International Conference on. IEEE, 2014.

    Google Scholar 

  37. A. N. Paithane and D. S. Bormane. “Electrocardiogram signal analysis using empirical mode composition and Hilbert spectrum.” Pervasive Computing (ICPC), 2015 International Conference on. IEEE, 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Raut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this paper

Cite this paper

Raut, S.V., Yadav, D.M. (2017). A Review on fMRI Signal Analysis and Brain Mapping Methodologies. In: Satapathy, S., Prasad, V., Rani, B., Udgata, S., Raju, K. (eds) Proceedings of the First International Conference on Computational Intelligence and Informatics . Advances in Intelligent Systems and Computing, vol 507. Springer, Singapore. https://doi.org/10.1007/978-981-10-2471-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2471-9_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2470-2

  • Online ISBN: 978-981-10-2471-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics