Skip to main content

Stimuli-Responsive Structure Control of Self-Assembled Gold Nanoparticles

  • Chapter
  • First Online:
Stimuli-Responsive Interfaces

Abstract

Metal nanostructures have attracted a great deal of attention as components of functional materials, and there is a great demand for the development of functional devices composed of these metal nanostructures. In particular, the fabrication of metal nanostructures with dynamic structure control by external stimuli is a major focus. In this chapter, several studies related to “the stimuli-responsive structure control of metal nanostructures” will be introduced, with a particular focus on our own research. Our fabrication strategy is based on self-organization by controlling the surface properties of nanoparticles and tuning their self-assembly through the design and synthesis of surface-modifying ligands. When gold nanoparticles (AuNPs) were modified with fluorinated tetra(ethylene glycol) derivatives, the AuNPs could spontaneously form a well-packed thin film during the drying process or hollow capsules in THF solutions. The AuNP thin film could be transferred onto hydrogel and the intervals in the AuNP array tuned by changes in the size of the gel. One of the potential applications of this tunable plasmonic structure is in sensing devices using surface-enhanced Raman scattering (SERS). This control of the gap distance in the AuNP assembly could effectively work in the SERS detection of proteins, the signal of which was enhanced more than 10-fold in comparison with that of a conventional system. AuNP capsules were cross-linked with PEG to improve the stability of the capsules in water and to give thermo-responsiveness. Cross-linked AuNP capsules showed a rapid response upon light irradiation, suggesting that they have potential applications as a drug delivery carrier with a controlled release function triggered by light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(80):720–731

    Google Scholar 

  2. Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116:153–166

    Article  Google Scholar 

  3. Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492

    Article  Google Scholar 

  4. Lee SH, Dominguez R (2010) Regulation of actin cytoskeleton dynamics in cells. Mol Cells 29:311–325

    Article  Google Scholar 

  5. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592

    Article  Google Scholar 

  6. Nie Z, Petukhova A, Kumacheva E (2010) Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat Nanotechnol 5:15–25

    Article  Google Scholar 

  7. Mubeen S, Lee J, Singh N, Krämer S, Stucky GD, Moskovits M (2013) An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat Nanotechnol 8:247–251

    Article  Google Scholar 

  8. Alvarez-Puebla RA, Agarwal A, Manna P, Khanal BP, Aldeanueva-Potel P, Carbó-Argibay E, Pazos-Pérez N, Vigderman L, Zubarev ER, Kotov NA, Liz-Marzán LM (2011) Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proc Natl Acad Sci USA 108:8157–8161

    Article  Google Scholar 

  9. Han X, Liu Y, Yin Y (2014) Colorimetric stress memory sensor based on disassembly of gold nanoparticle chains. Nano Lett 14:2466–2470

    Article  Google Scholar 

  10. Grzelczak M, Vermant J, Furst EM, Liz-Marzán LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4:3591–3605

    Article  Google Scholar 

  11. Iida R, Kawamura H, Niikura K, Kimura T, Sekiguchi S, Joti Y, Bessho Y, Mitomo H, Nishino Y, Ijiro K (2015) Synthesis of Janus-like gold nanoparticles with hydrophilic/hydrophobic faces by surface ligand exchange and their self-assemblies in water. Langmuir 31:4054–4062

    Article  Google Scholar 

  12. Nishio T, Niikura K, Matsuo Y, Ijiro K (2010) Self-lubricating nanoparticles: self-organization into 3D-superlattices during a fast drying process. Chem Commun (Camb) 46:8977–8979

    Article  Google Scholar 

  13. Niikura K, Iyo N, Higuchi T, Nishio T, Jinnai H, Fujitani N, Ijiro K (2012) Gold nanoparticles coated with semi-fluorinated oligo(ethylene glycol) produce sub-100 nm nanoparticle vesicles without templates. J Am Chem Soc 134:7632–7635

    Article  Google Scholar 

  14. Mitomo H, Horie K, Matsuo Y, Niikura K, Tani T, Naya M, Ijiro K (2016) Active gap SERS for the sensitive detection of biomacromolecules with plasmonic nanostructures on hydrogels. Adv Opt Mater 4:259–263

    Google Scholar 

  15. Niikura K, Iyo N, Matsuo Y, Mitomo H, Ijiro K (2013) Sub-100 nm gold nanoparticle vesicles as a drug delivery carrier enabling rapid drug release upon light irradiation. ACS Appl Mater Interfaces 5:3900–3907

    Article  Google Scholar 

  16. Park SY, Lytton-Jean AKR, Lee B, Weigand S, Schatz GC, Mirkin CA (2008) DNA-programmable nanoparticle crystallization. Nature 451:553–556

    Article  Google Scholar 

  17. Nykypanchuk D, Maye MM, van der Lelie D, Gang O (2008) DNA-guided crystallization of colloidal nanoparticles. Nature 451:549–552

    Article  Google Scholar 

  18. Achermann M, Petruska MA, Crooker SA, Klimov VI (2003) Picosecond energy transfer in quantum dot Langmuir–Blodgett nanoassemblies. J Phys Chem B 107:13782–13787

    Article  Google Scholar 

  19. Kanehara M, Kodzuka E, Teranishi T (2006) Self-assembly of small gold nanoparticles through interligand interaction. J Am Chem Soc 128:13084–13094

    Article  Google Scholar 

  20. Lin MH, Chen HY, Gwo S (2010) Layer-by-layer assembly of three-dimensional colloidal supercrystals with tunable plasmonic properties. J Am Chem Soc 132:11259–11263

    Article  Google Scholar 

  21. Rabani E, Reichman DR, Geissler PL, Brus LE (2003) Drying-mediated self-assembly of nanoparticles. Nature 426:271–274

    Article  Google Scholar 

  22. Dong A, Chen J, Vora PM, Kikkawa JM, Murray CB (2010) Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface. Nature 466:474–477

    Article  Google Scholar 

  23. Fujita M, Nishikawa H, Okubo T, Yamaguchi Y (2004) Multiscale simulation of two-dimensional self-organization of nanoparticles in liquid film. Japanese J Appl Phys Part 1 Regul Pap Short Notes Rev Pap 43:4434–4442

    Google Scholar 

  24. Hu M, Chujo S, Nishikawa H, Yamaguchi Y, Okubo T (2004) Spontaneous formation of large-area monolayers of well-ordered nanoparticles via a wet-coating process. J Nanopart Res 6:479–487

    Article  Google Scholar 

  25. Yonezawa T, Onoue S, Kimizuka N (2001) Self-organized superstructures of fluorocarbon-stabilized silver nanoparticles. Adv Mater 13:140–142

    Article  Google Scholar 

  26. Schweizer DK, Eigler EK (1990) Positioning single atoms with a scanning tunneling microscop. Nature 344:524–525

    Article  Google Scholar 

  27. Hirokawa Y, Tanaka T (1984) Volume phase transition in a nonionic gel. J Chem Phys 81:6379

    Article  Google Scholar 

  28. Shimamoto N, Tanaka Y, Mitomo H, Kawamura R, Ijiro K, Sasaki K, Osada Y (2012) Nanopattern fabrication of gold on hydrogels and application to tunable photonic crystal. Adv Mater 24:5243–5248

    Article  Google Scholar 

  29. Chen H, Ming T, Zhao L, Wang F, Sun L-D, Wang J, Yan C-H (2010) Plasmon–molecule interactions. Nano Today 5:494–505

    Article  Google Scholar 

  30. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  Google Scholar 

  31. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostruct Plasmonic Sens 494–521

    Google Scholar 

  32. Wang G, Mitomo H, Matsuo Y, Shimamoto N, Niikura K, Ijiro K (2013) DNA-templated plasmonic Ag/AgCl nanostructures for molecular selective photocatalysis and photocatalytic inactivation of cancer cells. J Mater Chem B 1:5899

    Article  Google Scholar 

  33. Tian Z, Ren B, Wu D (2002) Surface-enhanced Raman scattering: from noble to transition metals and from rough. J Phys Chem 106:9463–9483

    Article  Google Scholar 

  34. Yokota Y, Ueno K, Misawa H (2011) Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles. Chem Commun (Camb) 47:3505–3507

    Article  Google Scholar 

  35. Banholzer MJ, Millstone JE, Qin L, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37:885

    Article  Google Scholar 

  36. Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65:36–48

    Article  Google Scholar 

  37. Yoo J-W, Irvine DJ, Discher DE, Mitragotri S (2011) Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov 10:521–535

    Article  Google Scholar 

  38. Song J, Cheng L, Liu A, Yin J, Kuang M, Duan H (2011) Plasmonic vesicles of amphiphilic gold nanocrystals: self-assembly and external-stimuli-triggered destruction. J Am Chem Soc 133:10760–10763

    Article  Google Scholar 

  39. Nikolic MS, Olsson C, Saldier A, Kornowski A, Rank A, Schubert R, Frömsdorf A, Weller H, Förster S (2009) Micelle and vesicle formation of amphiphilic nanoparticles. Angew Chem Int Ed 48:2752–2754

    Article  Google Scholar 

  40. Nie Z, Fava D, Kumacheva E, Zou S, Walker GC, Rubinstein M (2007) Self-assembly of metal–polymer analogues of amphiphilic triblock copolymers. Nat Mater 6:609–614

    Article  Google Scholar 

  41. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    Google Scholar 

  42. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano MR, Miyazono K, Uesaka M, Nishiyama N, Kataoka K (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6:815–823

    Article  Google Scholar 

  43. Bjorling M, Karlstrom G, Linse P (1991) Conformatlonal adaptlon of Poly(ethylene oxide). J Phys Chem 95:6706–6709

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Niikura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Mitomo, H., Niikura, K., Ijiro, K. (2017). Stimuli-Responsive Structure Control of Self-Assembled Gold Nanoparticles. In: Kawai, T., Hashizume, M. (eds) Stimuli-Responsive Interfaces. Springer, Singapore. https://doi.org/10.1007/978-981-10-2463-4_8

Download citation

Publish with us

Policies and ethics