Skip to main content

Stimuli-Responsive Self-Healing Viscoelastic Gels

  • Chapter
  • First Online:
Stimuli-Responsive Interfaces

Abstract

A viscoelastic gel (VEG) can exhibit both viscous and elastic properties. Such gels can respond dramatically to the external stimulus like temperature, pH, and CO2 showing change in macroscopic properties with minor variation in the environment. Some smart viscoelastic gels show switchable self-healing properties on switching ON–OFF of stimuli. They revert to their original form on removing stimuli imposed. They have been studied extensively by the theoreticians and experimentalists—owing to their unique rheological properties and prospective applications and great potential in various industrial applications ranging from microfluidics, oil production, drug delivery, to drag reduction. Recently, smart viscoelastic gels (SVEGs) have attracted considerable interest due to the tunability of their viscoelasticity with imposed stimuli, such as electric currents, UV–Vis, temperature, redox reaction, and pH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kruyt HR (ed) (1949) Colloid Science; vol II, Amsterdam: Elsevier, p. 484 (Chapter XII)

    Google Scholar 

  2. Wallace DG, Rosenblatt (2003) Collagen gel systems for sustained delivery and tissue engineering. J Adv Drug Deliv Revs 55:1631–1649

    Article  Google Scholar 

  3. Clark JB (1952) Treatment of wells; U.S. Patent 2,596,844; May 13

    Google Scholar 

  4. Fieser LP, Harris GC, Hershberg EB, Morgana M, Novello FC, Putnam ST (1946) Napalm. Ind Eng Chem 38:768–773

    Article  Google Scholar 

  5. See for instance the architecture and sculpture art of Buckminster Fuller and Kenneth Snelson for applications of the concept of “tensegrity” [a]. [a] Ingber DE (1998) Sci Amer 278:48–57

    Google Scholar 

  6. Greer SC (2002) Reversible polymerization and aggregations. Ann Rev Phys Chem 53:173–200

    Article  Google Scholar 

  7. Kirchhausen T (2000) Clathrin. Ann Rev Biochem 69:699–727

    Article  Google Scholar 

  8. (a) Tuszynski JA, Brown JA, Sept D (2003) Models of the collective behavior of proteins in cells: Tubulin, actin and motor proteins. J Biol Phys 29:401–428. (b) Oakley BR, Akkari YN (1999) γ-Tubulin at ten: progress and prospects. Cell Struct Funct 24:365–372

    Google Scholar 

  9. (a) Fuchs E (1995) Keratins and the skin. Ann Rev Cell Dev Biol 11:123–153. (b) Smack DP, Korge BP, James WD (1994) Keratin and keratinization. J Am Acad Dermatol 30:85–102

    Google Scholar 

  10. Waugh DF (1946) A fibrous modification of insulin. I. The heat precipitate of insulin. J Am Chem Soc 68:247–250

    Article  Google Scholar 

  11. Caria A, Bixio L, Kostyuk O, Ruggiero C (2004) Elastic scattering and light transport in three-dimensional collagen gel constructs: a mathematical model and computer Simulation approach. IEEE Trans Nanobiosci 3:85–89

    Article  Google Scholar 

  12. (a) Jin HJ, Kaplan DL (2003) Mechanism of silk processing in insects and spiders Nature 424:1057–1061. (b) Valluzzi R, Jin HJ (2004) Park templated native silk smectic gels. J PCT Int Appl WO 41,845 (Cl. C07 K), 21 May 2004

    Google Scholar 

  13. (a) Jimenez JL, Nettleton EJ, Bouchard, M, Robinson CV, Dobson, CM, Saibil HR (2002) The protofilament structure of insulin amyloid fibrils. Proc Natl Acad Sci USA 99:9196–9201. (b) Liu W, Prausnitz JM, Blanch HW (2004) Amyloid fibril formation by peptide LYS (11–36) in aqueous trifluoroethanol. Biomacromolecules 5:1818–1823. (c) Nilson MR (2004) Techniques to study amyloid fibril formation in vitro methods 34:151–160. (d) Waterhouse SH, Gerrard JA (2004) Amyloid fibrils in bionanotechnology. Aust J Chem 57:519–523

    Google Scholar 

  14. Galkin O, Vekilov PG (2004) Mechanisms of homogeneous nucleation of polymers of sickle cell anemia hemoglobin in deoxy state. J Mol Biol 336:43–59

    Article  Google Scholar 

  15. (a) Drukman S, Kavallaris M (2002) Microtubule alterations and resistance to tubulin-binding agents Int J Oncol 21:621–628. (b) Reinhart WH (2001) Molecular biology and self-regulatory mechanisms of blood viscosity: a review. J Biorheol 38:203–212

    Google Scholar 

  16. Dee EM, McGinley M, Michael Hogan C (2010) Long-finned pilot whale. In: Saundry P, Cleveland C (eds) Encyclopedia of earth. National Council for Science and the Environment, Washington DC

    Google Scholar 

  17. Chu Z, Dreiss CA, Feng Y (2013) Smart wormlike micelles. Chem Soc Rev 42:7174–7203

    Google Scholar 

  18. Tokarev I, Minko S (2009) Multiresponsive, hierarchically structured membranes: new, challenging, biomimetic materials for biosensors, controlled release, biochemical gates, and nanoreactors. Adv Mater 21:241–247

    Article  Google Scholar 

  19. Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33:1088–1118

    Article  Google Scholar 

  20. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879

    Article  Google Scholar 

  21. Pucci A, Bizzarri R, Ruggeri G (2011) Polymer composites with smart optical properties. Soft Matter 7:3689–3700

    Article  Google Scholar 

  22. Hartsock DL, Novak RF, Chaundy GJ (1991) ER fluid requirements for automotive devices. J Rheol 35:1305–1326

    Article  Google Scholar 

  23. Ketner AM, Kumar R, Davies TS, Elder PW, Raghavan SR (2007) A simple class of photorheological fluids: surfactant solutions with viscosity tunable by light. J Am Chem Soc 129:1553–1559

    Article  Google Scholar 

  24. Stanway R, Sproston JL, El-Wahed AK (1996) Applications of electro-rheological fluids in vibration control: a survey. Smart Mater Struct 5:464–482

    Article  Google Scholar 

  25. Boek ES, Jusufi A, LoÅNwen H, Maitland GC (2002) Molecular design of responsive fluids: molecular dynamics studies of viscoelastic surfactant solutions. J Phys Condens Matter 14:9413–9430

    Article  Google Scholar 

  26. Chu Z, Feng Y (2011) Thermo-switchable surfactant gel. Chem Commun 47:7191–7193

    Article  Google Scholar 

  27. Bohon K, Krause S (1998) An electrorheological fluid and siloxane gel based electromechanical actuator: working toward an artificial muscle. J Polym Sci Part B Polym Phys 36:1091–1094

    Article  Google Scholar 

  28. Stanway R, Sproston JL, El-Wahed AK (1996) Applications of electro-rheological fluids in vibration control: a survey. Smart Mater Struct 5:464–482

    Article  Google Scholar 

  29. Saji T, Hoshino K, Aoyagui S (1985) Reversible formation and disruption of micelles by control of the redox state of the surfactant tail group. J Chem Soc Chem Commun 865–866

    Google Scholar 

  30. Saji T, Hoshino K, Aoyagui S (1985) Reversible formation and disruption of micelles by control of the redox state of the head group. J Am Chem Soc 107:6865–6868

    Article  Google Scholar 

  31. Aydogan N, Gallardo BS, Abbott NL (1999) A molecular-thermodynamic model for gibbs monolayers formed from redox-active surfactants at the surfaces of aqueous solutions: redox-induced changes in surface tension. Langmuir 15:722–730

    Article  Google Scholar 

  32. Aydogan N, Abbott NL (2001) Comparison of the surface activity and bulk aggregation of ferrocenyl surfactants with cationic and anionic headgroups. Langmuir 17:5703–5706

    Article  Google Scholar 

  33. Sakai H, Imamura H, Kondo Y, Yoshino N, Abe M (2004) Reversible control of vesicle formation using electrochemical reaction. Colloids Surf A 232:221–228

    Article  Google Scholar 

  34. Tsuchiya K, Sakai H, Saji T, Abe M (2003) Electrochemical reaction in an aqueous solution of a ferrocene-modified cationic surfactant mixed with an anionic surfactant. Langmuir 19:9343–9350

    Article  Google Scholar 

  35. Tsuchiya K, Orihara Y, Kondo Y, Yoshino N, Ohkubo T, Sakai H, Abe M (2004) Control of viscoelasticity using redox reaction. J Am Chem Soc 126:12282–12283

    Article  Google Scholar 

  36. Yang D, Piech M, Bell NS, Gust D, Vail S, Garcia AA, Schneider J, Park CD, Hayes MA, Picraux ST (2007) Photon control of liquid motion on reversibly photoresponsive surfaces. Langmuir 23:10864–10872

    Article  Google Scholar 

  37. Wolff T, Kerperin K (1993) Influence of solubilized 2,2,2-Trifluoro-1-(9-anthryl)-ethanol and its photodimerization on viscoelasticity in dilute aqueous cetyltrimethylammonium bromide solutions. J Colloid Interface Sci 157:185–195

    Article  Google Scholar 

  38. Lehnberger C, Wolff T (1999) Photorheological effects in aqueous micellar tetramethylammoniumhydrogen-2-dodecyl malonate via photodimerization of acridizinium bromide. J Colloid Interface Sci 213:187–192

    Article  Google Scholar 

  39. Yu XL, Wolff T (2003) Rheological and photorheological effects of 6-alkyl coumarins in aqueous micellar solutions. Langmuir 19:9672–9679

    Article  Google Scholar 

  40. (a) Shang T, Smith KA, Hatton, TA (2006) Self-Assembly of a nonionic photoresponsive surfactant under varying irradiation conditions: a small-angle neutron scattering and cryo-tem study. Langmuir 22:1436–1442. (b) Sakai H, Orihara Y, Kodashima H, Matsumura A, Ohkubo T, Tsuchiya K, Abe M (2005) Photoinduced reversible change of fluid viscosity. J Am Chem Soc 127:13454–13455. (c) Sakai H, Matsumura A, Yokoyama S, Saji T, Abe M (1999) Photochemical switching of vesicle formation using an azobenzene-modified surfactant. J Phys Chem B 103:10737-10740. (d) Hubbard Jr FP, Santonicola G, Kaler EW, Abbott NL (2005) Small-angle neutron scattering from mixtures of sodium Dodecyl sulfate and a cationic, bolaform surfactant containing azobenzene. Langmuir 21:6131–6136. (e) Lee CT, Smith KA, Hatton TA (2005) Photocontrol of protein folding: the interaction of photosensitive surfactants with bovine serum albumin. Biochemistry 44:524–536. (f) Orihara Y, Matsumura A, Saito Y, Ogawa, N, Saji T, Yamaguchi A, Sakai H, Abe M (2001) Reversible release control of an oily substance using photoresponsive micelles. Langmuir 17:6072–6076. (g) Shin JY, Abbott N L (1999) Using light to control dynamic surface tensions of aqueous solutions of water soluble surfactants. Langmuir 15:4404–4410. (h) Bradley M, Vincent B, Warren N, Eastoe J, Vesperinas A (2006) Photoresponsive surfactants in microgel dispersions. Langmuir 22:101–105. (i) Bi Y, Wei H, Hu Q, Xu W, Gong Y, Yu L (2015) Wormlike micelles with photoresponsive viscoelastic behavior formed by surface active ionic liquid/azobenzene derivative mixed solution. Langmuir 31:3789–3798

    Google Scholar 

  41. (a) Eastoe J, Dominguez MS, Wyatt P, Beeby A, Heenan, RK (2002) Properties of a stilbene-containing gemini photosurfactant: light-triggered changes in surface tension and aggregation. Langmuir, 18:7837–7844. (b) Eastoe J, Dominguez MS, Wyatt P, Heenan RK (2004) UV causes dramatic changes in aggregation with mixtures of photoactive and inert surfactants. Langmuir, 20:6120–6126. (c) Kozlecki T, Wilk KA (1996) Photochemical behavior of micellized 4-(4′-alkylstyryl) pyridinium salts. J Phys Org Chem 9:645–651. (d) Kozlecki T, Wilk KA Syper L (1998) Photoisomerizable cationic surfactants as microviscosity probes. Prog Colloid Poly Sci 110:193–198

    Google Scholar 

  42. (a) Sun C, Arimitsu K, Abe K, Ohkubo T, Yamashita T, Sakai H, Abe M (2004) synthesis and photochemical properties of a cationic surfactant having a spiropyran group M. Mater Technol 22:229–232. (b) Liu S, Fujihira M, Saji T (1994) Formation of an organic thin film by photochemical isomerization of a surfactant with a spiropyran moiety J Chem Soc Chem Comm 16:1855–1856

    Google Scholar 

  43. (a) Kumar R, Ketner AM, Raghavan SR (2010) Nonaqueous photorheological fluids based on light-responsive reverse wormlike micelles. Langmuir 26:5405–5411. (b) Kumar R, Raghavan SR (2009) Photogelling fluids based on light-activated growth of zwitterionic wormlike micelles. Soft Matter 5:797–803

    Google Scholar 

  44. Sakai H, Taki S, Tsuchiya K, Matsumura A, Sakai K, Abe M (2012) Photochemical control of viscosity using sodium cinnamate as a photoswitchable molecule. Chem Lett 41:247–248

    Article  Google Scholar 

  45. Kumar R, Raghavan SR (2009) Photogelling fluids based on light-activated growth of zwitterionic wormlike micelles. Soft Matter 5:797–803

    Article  Google Scholar 

  46. Baglioni P, Braccalenti E, Carretti E, Germani R, Goracci L, Savelli G, Tiecco M (2009) Surfactant-based photorheological fluids: effect of the surfactant structure. Langmuir 25:5467–5475

    Article  Google Scholar 

  47. Li J, Zhao M, Zhou H, Gao H, Zheng L (2012) Photo-induced transformation of wormlike micelles to spherical micelles in aqueous solution. Soft Matter 8:7858–7864

    Article  Google Scholar 

  48. Du M, Dai C, Chen A, Wu X, Li Y, Liu Y, Li W, Zhao M (2015) Investigation on the aggregation behavior of photo-responsive system composed of 1-hexadecyl-3-methylimidazolium bromide and 2-methoxycinnamic acid. RSC Adv 5:68369–68377

    Google Scholar 

  49. Oh H, Ketner AM, Heymann R, Kesselman E, Danino D, Falvey DE, Raghavan SR (2013) A simple route to fluids with photo-switchable viscosities based on a reversible transition between vesicles and wormlike micelles. Soft Matter 9:5025–5033

    Article  Google Scholar 

  50. Matsumura A, Sakai K, Sakai H, Abe M (2011) Photoinduced increase in surfactant solution viscosity using azobenzene dicarboxylate for molecular switching. J Oleo Sci 60:203–207

    Article  Google Scholar 

  51. Yan H, Long Y, Song K, Tung C-H, Zheng L (2014) Photo-induced transformation from wormlike to spherical micelles based on pyrrolidinium ionic liquids. Soft Matter 10:115–121

    Article  Google Scholar 

  52. Lu Y, Zhou T, Fan Q, Dong J, Li X (2013) Light-responsive viscoelastic fluids based on anionic wormlike micelles. J Colloid Interface Sci 412:107–111

    Article  Google Scholar 

  53. Takahashi Y, Yamamoto Y, Hata S, Kondo Y (2013) Unusual viscoelasticity behaviour in aqueous solutions containing a photoresponsive amphiphile. J Colloid Interface Sci 407:370–374

    Article  Google Scholar 

  54. Jr Hubbard FP, Abbott NL (2007) Effect of light on self-assembly of aqueous mixtures of sodium dodecyl sulfate and a cationic bolaform surfactant containing azobenzene. Langmuir 23:4819–4829

    Article  Google Scholar 

  55. Aikawa S, Shrestha RG, Ohmori T, Fukukita Y, Tezuka Y, Endo T, Torigoe K, Tsuchiya K, Sakamoto K, Sakai K, Abe M, Sakai H (2013) Photorheological response of aqueous wormlike micelles with photocleavable surfactant. Langmuir 29:5668–5676

    Article  Google Scholar 

  56. (a) Shchipunov YA (2001) Colloid Surf A 183–185:541–554. (b) Willard DM, Riter RE, Levinger NE (1998) Dynamics of polar solvation in lecithin/water/cyclohexane reverse micelles. J Am Chem Soc 120:4151–4160. (c) Scartazzini R, Luisi PL (1988) Organogels from lecithins. J Phys Chem 92:829–833

    Google Scholar 

  57. (a) Hashizaki K, Taguchi H, Saito Y (2009) A novel reverse worm-like micelle from a lecithin/sucrose fatty acid ester/oil system. Colloid Polym Sci 287:1099–1105. (b) Hashizaki K, Chiba T, Taguchi H, Saito Y (2009) Highly viscoelastic reverse worm-like micelles formed in a lecithin/urea/oil system. Colloid Polym Sci 287:927–932

    Google Scholar 

  58. (a) Hashizaki K, Taguchi H, Saito Y (2009) New Lecithin organogels with sugars of RNA and DNA. Chem Lett 38:1036–1037. (b) Hashizaki K, Sakanishi Y, Yako S, Tsusaka H, Imai M, Taguchi H, Saito, Y (2012) New lecithin organogels from lecithin/polyglycerol/oil systems. J Oleo Sci 61:267–275

    Google Scholar 

  59. (a) Tung SH, Huang YE, Raghavan SR (2006) A new reverse wormlike micellar system: mixtures of bile salt and lecithin in organic liquids. J Am Chem Soc 128:5751–5756. (b) Tung SH, Huang, YE, Raghavan SR (2007) Contrasting effects of temperature on the rheology of normal and reverse wormlike micelles. Langmuir 23:372–376

    Google Scholar 

  60. (a) Schurtenberger P, Scartazzini R, Magid, LJ, Leser ME, Luisi PL (1990) Structural and dynamic properties of polymer-like reverse micelles. J Phys Chem 94:3695-3701. (b) Schurtenberger, P, Magid LJ, King SM, Lindner, P (1991) Cylindrical structure and flexibility of polymerlike lecithin reverse micelles J Phys Chem 95:4173–4176

    Google Scholar 

  61. Kumar R, Ketner MA, Raghavan SR (2010) Nonaqueous photorheological fluids based on light-responsive reverse wormlike micelles. Langmuir 26(8):5405–5411

    Article  Google Scholar 

  62. Shrestha RG, Agari N, Tsuchiya K, Sakamoto K, Sakai K, Abe M, Sakai H (2014) Phosphatidylcholine-based nonaqueous photorheological fluids: effect of geometry and solvent. Colloid Polym Sci 292:1599–1609

    Article  Google Scholar 

  63. Lee HY, Diehn KK, Sun K, Chen T, Raghavan SR (2011) Reversible photorheological fluids based on spiropyran-doped reverse micelles. J Am Chem Soc 133:8461

    Article  Google Scholar 

  64. (a) Kawasaki H, Souda M, Tanaka S, Nemoto N, Karlsson G, Almgren M, Maeda H (2002) Reversible vesicle formation by changing pH. J Phys Chem B 106:1524–1527. (b) Maeda H, Yamamoto A, Souda M, Kawasaki H, Hossain KS, Nemoto N, Almgren M (2001) Effects of protonation on the viscoelastic properties of tetradecyldimethylamine oxide micelles. J Phys Chem B 105:5411–5418. (c) Maeda H, Tanaka S, Ono Y, Miyahara M, Kawasaki H, Nemoto N, Almgren M (2006) Reversible micelle-vesicle conversion of oleyldimethylamine oxide by pH changes. J Phys Chem B 110:12451–12458. (d) Majhi PR, Dubin PL, Feng X, Guo X (2004) Coexistence of spheres and rods in micellar solution of dodecyldimethylamine oxide. J Phys Chem B 108:5980–5988

    Google Scholar 

  65. (a) Lin Y, Han X, Huang J, Fu H, Yu C (2009) A facile route to design pH-responsive viscoelastic wormlike micelles: smart use of hydrotropes. J Colloid Interface Sci 330:449–455. (b) Yan H, Zhao M, Zheng L (2011) A hydrogel formed by cetylpyrrolidinium bromide and sodium salicylate. Colloid Surf A Physicochem Eng Asp 392:205–212. (c) Verma G, Aswal VK, Hassan P (2009) pH-responsive self-assembly in an aqueous mixture of surfactant and hydrophobic amino acid mimic. Soft Matter 5:2919–2927. (d) Ali M, Jha M, Das SK, Saha SK (2009) Hydrogen-bond-induced microstructural transition of ionic micelles in the presence of neutral naphthols: pH dependent morphology and location of surface activity. J Phys Chem B 113:15563–15571

    Google Scholar 

  66. (a) Lin Y, Han X, Cheng X, Huang J, Liang D, Yu C (2008) pH-regulated molecular self-assemblies in a cationic–anionic surfactant system: from a “1–2” surfactant pair to a “1-1” surfactant pair. Langmuir 24:13918–13924 12. (b) Ghosh S, Khatua D, Dey J (2011) Interaction between zwitterionic and anionic surfactants: spontaneous formation of zwitanionic vesicles. Langmuir 27:5184–5192

    Google Scholar 

  67. (a) Smart fluids: switchable viscosity. NPG Asia Mater Research Highlight (2011). doi:10.1038/asiamat.2011.29. (b) Johnsson M, Wagenaar A, Engberts JBFN (2003) Sugar-based gemini surfactant with a vesicle-to-micelle transition at acidic pH and a reversible vesicle flocculation near neutral pH. J Am Chem Soc 125:757–760. (c) Johnsson M, Wagenaar A, Stuart MCA, Engberts JBFN (2003) Sugar-based gemini surfactants with pH-dependent aggregation behavior: vesicle-to-micelle transition, critical micelle concentration, and vesicle surface charge reversal. Langmuir 19:4609–4618. (d) Jaeger DA, Li G, Subotkowski W, Carron KT (1997) Fibers and other aggregates of omega-substituted surfactants. Langmuir 13:5563–5569. (e) Graf G, Drescher S, Meister A, Dobner B, Blume A (2011) Self-assembled bolaamphiphile fibers have intermediate properties between crystalline nanofibers and wormlike micelles: formation of viscoelastic hydrogels switchable by changes in pH and salinity. J Phys Chem B 115:10478–10487. (f) Yao R Qian J. Li H. Yasin A. Xie Y. Yang H (2014) Synthesis and high performance of a new sarcosinate anionic surfactant with a long unsaturated tail. RSC Adv 4:2865–2872

  68. Ono Y, Shikata T (2005) Dielectric behavior of aqueous micellar solutions of betaine-type surfactants. J Phys Chem B 109:7412–7419

    Article  Google Scholar 

  69. (a) Ikeda S, Tsunoda M, Maeda H (1979) Effects of ionization on micelles size of dimethyldodecylamine oxide. J Colloid Interface Sci 70:448–455. (b) Herrmann KW (1962) Nonionic–cationic micellar properties of dimethyldodecylamine oxide. J Phys Chem 66:295–300

    Google Scholar 

  70. Chu Z, Feng Y (2010) ‘Smart fluids: switchable viscosity’, NPG Asia Mater, featured highlight. Chem Commun 46:9028–9030

    Google Scholar 

  71. Hoffmann H (1994) Viscoelastic surfactant solutions. In: Herb CA, Prud’homme RK (eds) Structure and flow of surfactant solution. ACS Symp Ser vol 578. American Chemical Society, Washington, DC, pp 2–31

    Google Scholar 

  72. Hashimoto K, Imae T (1991) Rheological properties of aqueous solutions of alkyldimethylamine and oleyldimethylamine oxides—spinnability and viscoelasticity. Langmuir 7:1734–1741

    Article  Google Scholar 

  73. Rathman JF, Christian SD (1990) Determination of surfactant activities in micellar solutions of dimethyldodecylamine oxide. Langmuir 6:391–395

    Article  Google Scholar 

  74. Maeda H (1996) Dodecyldimethylamine oxide micelles: stability, aggregation number and titration properties. Colloids Surf A 109:263–271

    Article  Google Scholar 

  75. Zhang H, Dubin PL, Kaplan JI (1991) Potentiometric and dynamic light scattering studies of micelles of dimethyldodecylamine oxide. Langmuir 7:2103–2107

    Article  Google Scholar 

  76. Mille M (1981) Effect of nearest-neighbor interactions on surface titrations. J Colloid Interface Sci 81:169–179

    Article  Google Scholar 

  77. Brinchi L, Germani R, Profio PD, Marte L, Savelli G, Oda R, Berti D (2010) Viscoelastic solutions formed by worm-like micelles of amine oxide surfactant. J Colloid Interface Sci 346:100–106

    Article  Google Scholar 

  78. (a) Lin Y, Han X, Huang J, Fu H, Yu C (2009) A facile route to design pH-responsive viscoelastic wormlike micelles: smart use of hydrotropes. J Colloid Interface Sci 330:449–455. (b) Yan H, Zhao M, Zheng L (2011) A hydrogel formed by cetylpyrrolidinium bromide and sodium salicylate. Colloid Surf A Physicochem Eng Asp 392:205–212. (c) Verma G, Aswal VK, Hassan P (2009) pH-responsive self-assembly in an aqueous mixture of surfactant and hydrophobic amino acid mimic. Soft Matter 5:2919–2927. (d) Ali M, Jha M, Das SK, Saha SK (2009) Hydrogen-bond-induced microstructural transition of ionic micelles in the presence of neutral naphthols: pH dependent morphology and location of surface activity. J Phys Chem B 113:15563–15571

    Google Scholar 

  79. Zhao L, Wang K, Xu L, Liu Y, Zhag S, Li Z, Yan Y, Huang J (2012) Extremely pH-sensitive fluids based on a rationally designed simple amphiphile. Soft Matter 8:9079

    Article  Google Scholar 

  80. Sakai K, Nomura K, Shrestha RG, Endo T, Sakamoto K, Sakai H, Abe M (2012) Wormlike micelle formation by acylglutamic acid with alkylamines. Langmuir 28(51):17617–17622

    Article  Google Scholar 

  81. Jessop PG, Heldebrant DJ, Li XW, Eckert CA, Liotta CL (2005) Green chemistry-reversible nonpolar-to-polar solvent. Nature 436:1102

    Article  Google Scholar 

  82. Liu YX, Jessop PG, Cunningham M, Eckert CA, Liotta CL (2006) Switchable surfactants. Science 313:958–960

    Article  Google Scholar 

  83. Guo Z, Feng Y, Wang Y, Wang J, Wu Y, Zhang Y (2011) A novel smart polymer responsive to CO2. Chem Commun 47:9348–9350

    Article  Google Scholar 

  84. Guo Z, Feng Y, He S, Qu M, Chen H, Liu H, Wu Y, Wang Y (2013) CO2-responsive “smart” single-walled carbon nanotubes. Adv Mater 25:584–590

    Article  Google Scholar 

  85. Su X, Jessop PG, Cunningham MF (2012) Surfactant-free polymerization forming switchable latexes that can be aggregated and re-dispersed by CO2 removal and then re-addition. Macromolecules 45:666–670

    Article  Google Scholar 

  86. Zhang Y, Feng Y, Wang Y, Li X (2013) CO2 switchable viscoelastic fluids based on a pseudogemini surfactant. Langmuir 29(13):4187–4192

    Article  Google Scholar 

  87. Zhang Y, Chu Z, Dreiss CA, Wang Y, Fei C, Feng Y (2013) Smart wormlike micelles switched by CO2 and air†. Soft Matter 9:6217–6221

    Article  Google Scholar 

  88. Zhang Y, Feng Y (2015) CO2-induced smart viscoelastic fluids based on mixtures of sodium erucate and trimethylamine. J Colloid Interface Sci 447:173–181

    Article  Google Scholar 

  89. Zhang Y, Yin H, Feng Y (2014) CO2-responsive anionic wormlike micelles based on natural erucic acid. Green Mater 2:95–103

    Article  Google Scholar 

  90. Su X, Cunningham MF, Jessop PG (2013) Switchable viscosity triggered by CO2 using smart worm-like micelles, Chem Commun 49:2655–2657

    Google Scholar 

  91. Zhang Y, An P, Liu X, Fang Y, Hu X (2015) Smart use of tertiary amine to design CO2-triggered viscoelastic fluids Colloid Polym Sci 293:357–367

    Google Scholar 

  92. Peppas NA, Hiltz JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    Article  Google Scholar 

  93. Lo¨wik DWPM, Leunissen EHP, van den Heuvel M, Hansen MB, van Hest JCM (2010) Stimulus responsive peptide based materials. Chem Soc Rev 39:3394–3412

    Article  Google Scholar 

  94. (a) Raghavan SR, Kaler EW (2001) Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated tails. Langmuir 17:300–306. (b) Chu, Z, Feng Y (2010) Soft Matter 6:6065–6067. (c) Kumar R, Kalur, GC, Ziserman, L, Danino D, Raghavan SR (2007) Wormlike micelles of a C22-tailed zwitterionic betaine surfactant: from viscelastic solutions to elastic gels. Langmuir 23:12849–12856

    Google Scholar 

  95. Meng F, Zhong Z, Feijen J (2009) Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules, 10:197–209. (b) Xiong W, Wang W, Wang Y, Zhao Y, Chen H, Xu H, Yang X (2011) Dual temperature/pH-sensitive drug delivery of poly(N-isopropylacrylamide-co-acrylic acid) nanogels conjugated with doxorubicin for potential application in tumor hyperthermia therapy. Colloids Surf B 84:447-453. (c) Su J, Chen F, Cryns VL, Messersmith PB (2011) Catechol polymers for pH-responsive, targeted drug delivery to cancer cells. J Am Chem Soc 133:11850–11853

    Google Scholar 

  96. (a) Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Controlled Release 126:187–204. (b) Kretlow JD, Klouda L, Mikos AG (2007) Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Delivery Rev 59:263–273. (c) You YZ, Zhou QH, Manickam DS, Wan L, Mao GZ, Oupicky D (2007) Dually responsive multiblock copolymers via reversible addition—fragmentation chain transfer polymerization: synthesis of temperature- and redox-responsive copolymers of poly(N-isopropylacrylamide) and poly(2-(dimethylamino)ethyl methacrylate). Macromolecules 40:8617–8624

    Google Scholar 

  97. (a) Afifi H, Karlsson G, Heenan R.K, Dreiss CA (2011) Solubilization of oils or addition of monoglycerides drives the formation of wormlike micelles with an elliptical cross-section in cholesterol-based surfactants: a study by rheology, SANS, and cryo-TEM. Langmuir 27:7480–7492. (b) Afifi H, Karlsson G, Heenan RK, Dreiss CA (2012) Structural transitions in cholesterol-based wormlike micelles induced by encapsulating alkyl ester oils with varying architecture. J Colloid Interface Sci 378:125–134

    Google Scholar 

  98. Wu Q, Wang L, Yu H, Wang J, Chen Z (2011) Organization of glucose-responsive systems and their properties. Chem Rev 111:7855–7875

    Article  Google Scholar 

  99. Dave El-Hamed F, Liu NJ (2011) Stimuli-responsive releasing of gold nanoparticles and liposomes from aptamer-functionalized hydrogels. Nanotechnology 22:494011

    Article  Google Scholar 

  100. Ferri V, Elbing M, Pace G, Dickey MD, Zharnikov M, Samori P, Mayor M, Rampi MA (2008) Light-powered electrical switch based on cargo-lifting azobenzene monolayers. Angew Chem Int Ed 47:3407–3409

    Article  Google Scholar 

  101. (a) Baglioni P, Braccalenti E, Carretti E, Germani R, Goracci L, Savelli G, Tiecco M (2009) Langmuir 25:5467–5475. (b) Pereira M, Leal CR, Parola AJ, Scheven UM (2010) Reversible photorheology in solutions of cetyltrimethylammonium bromide, salicylic acid, and trans-2,4,4′-trihydroxychalcone. Langmuir 26:16715–16721

    Google Scholar 

  102. Kefi S, Lee J, Pope TL, Sullivan P, Nelson E, Hernandez AN, Olsen T, Parlar M, Powers B, Roy A, Wilson A, Twynam A (2004) Expanding applications for viscoelastic surfactants. Oilfield Rev 16(4):10–23

    Google Scholar 

  103. Sullivan P, Nelson EB, Anderson V, Hughes T (2007) Oilfield applications of giant micelles. In: Zana R, Kaler EW (ed) Giant micelles: properties and applications. CRC Press, Boca Raton, pp 453–472

    Google Scholar 

  104. Dreiss CA Wormlike micelles: where do we stand? recent developments, linear rheology and scattering techniques. Soft Matter 3:956–970

    Google Scholar 

  105. Shi HF, Wang Y, Fang B, Talmon Y, Ge W, Raghavan SR, Zakin JL (2011) Light-responsive threadlike micelles as drag reducing fluids with enhanced heat-transfer capabilities. Langmuir 27:5806–5813

    Article  Google Scholar 

  106. Li G, Zhang Z (2004) Synthesis of dendritic polyaniline nanofibers in a surfactant gel. Macromolecules 37:2683–2685

    Article  Google Scholar 

  107. (a) Tan B, Dozier A, Lehmler HJ, Knutson BL, Rankin SE (2004) Elongated silica nanoparticles with a mesh phase mesopore structure by fluorosurfactant templating. Langmuir 20:6981–6984. (b) Nagamine S, Kurumada KI, Tanigaki M (2001) Growth of silica particles in surfactant gel. Adv. Powder Technol 12:145–156. (c) Broz P, Driamov S, Ziegler J, Ben-Haim N, Marsch S, Meier W, Hunziker P (2006) Toward intelligent nanosize bioreactors: a pH-switchable, channel-equipped, functional polymer nanocontainer. Nano Lett 6:2349–2353

    Google Scholar 

  108. Sakai K, Smith EG, Webber GB, Baker M, Wanless EJ, Bütün V, Armes SP, Biggs S (2006) Comparison of the adsorption of cationic diblock copolymer micelles from aqueous solution onto mica and silica. Langmuir 22:8435–8442

    Article  Google Scholar 

  109. Choi D, Kumta PN (2007) Surfactant based sol–gel approach to nanostructured LiFePO4 for high rate Li-ion batteries. J Power Sources 163:1064–1069

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rekha Goswami Shrestha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Shrestha, R.G., Aramaki, K. (2017). Stimuli-Responsive Self-Healing Viscoelastic Gels. In: Kawai, T., Hashizume, M. (eds) Stimuli-Responsive Interfaces. Springer, Singapore. https://doi.org/10.1007/978-981-10-2463-4_5

Download citation

Publish with us

Policies and ethics