Skip to main content

Stimuli-Responsive Charge-Free Reverse Micelles in Non-Aqueous Media

  • Chapter
  • First Online:
Stimuli-Responsive Interfaces

Abstract

In this chapter, formulation of charge-free nonionic surfactant reverse micelles in non-aqueous media and their structural transformations upon external stimuli are demonstrated. Contrary to the general postulation that reverse micelles usually assembled into spheroid shape with small aggregation number, formation of reverse rodlike micelles and evidence of sphere-to-wormlike reverse micelle transition are demonstrated in surfactant/oil system without the addition of water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    Article  Google Scholar 

  2. Cademartiri R, Stan CA, Tran VM, Wu E, Friar L, Vulis D, Clark LW, Tricard S, Whitesides GM (2012) A simple two-dimensional model system to study electrostatic self-assembly. Soft Matter 8:9771–9791

    Article  Google Scholar 

  3. Lopes WA, Jaeger HM (2001) Hierarchical self-assembly of metal nanostructures on diboloc copolymer scaffolds. Nature 414:735–738

    Article  Google Scholar 

  4. Stupp SI, LeBonheur VV, Walker K, Li LS, Huggins KE, Keser M, Amstutuz A (1997) Supramolecular materials: self-organized nanostructure. Science 276:384–389

    Article  Google Scholar 

  5. Rodríguez-Abreu C, Shrestha RG, Shrestha LK, Harush E, Regev O (2013) Wormlike soft nanostructures in nonionic systems: principles, properties and application as templates. J Nanosci Nanotechnol 13:4497–4520

    Article  Google Scholar 

  6. Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL (1998) DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 120:12674–12675

    Article  Google Scholar 

  7. Thota BNS, Urner LH, Haag R (2016) Supramolecular architectures of dendritic amphiphiles in water. Chem Rev 116:2079–2102

    Article  Google Scholar 

  8. Yu G, Jie K, Huang F (2015) Supramolecular amphiphiles based on host-guest molecular recognition motifs. Chem Rev 115:7240–7303

    Article  Google Scholar 

  9. Barclay TG, Constantopoulos K, Matisons J (2014) Nanotubes self-assembled from amphiphilic molecules via helical intermediates. Chem Rev 114:10217–10291

    Article  Google Scholar 

  10. Hill JP, Shrestha LK, Ishihara S, Ji Q, Ariga K (2014) Self-assembly: from amphiphile to chromophores and beyond. Molecules 19:8589–8609

    Article  Google Scholar 

  11. Ramanathan M, Shrestha LK, Mori T, Ji Q, Hill JP, Ariga K (2013) Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications. Phys Chem Chem Phys 15:10580–10611

    Article  Google Scholar 

  12. Shrestha LK, Strzelczyk KM, Shrestha RG, Ichikawa K, Aramaki K, Hill JP, Ariga K (2015) Nonionic amphiphile nanoarchitectonics: self-assembly into micelles and lyotropic liquid crystals. Nanotechnology 26:204002–204011

    Article  Google Scholar 

  13. Ariga K, Li J, Fei J, Ji Q, Hill JP (2016) Nanoarchitectonics for dynamics functional materials from atomic-/molecular-level manipulation to macroscopic action. Adv Mater 28:1251–1286

    Article  Google Scholar 

  14. Ariga K, Li J (2016) Nanoarchitectonics for advanced materials: strategy beyond nanotechnology. Adv Mater 28:987–988

    Article  Google Scholar 

  15. Aono M, Ariga K (2016) The way to nanoarchitectonics and the way of nanoarchitectonics. Adv Mater 28:989–992

    Article  Google Scholar 

  16. Ariga K, Ji Q, Nakanishi W, Hill JP, Aono M (2015) Nanoarchitectonics: a new materials horizon for nanotechnology. Mater Horiz 2:406–413

    Article  Google Scholar 

  17. Nakanishi W, Minami K, Shrestha LK, Ji Q, Hill JP, Ariga K (2014) Bioactive nanocarbon assemblies: nanoarchitectonics and application. Nano Today 9:378–394

    Article  Google Scholar 

  18. Shrestha LK, Ji Q, Mori T, Miyazawa K, Yamauchi Y, Hill JP, Ariga K (2013) Fullerene nanoarchitectonics: from zero to higher dimensions. Chem Asian J 8:1662–1679

    Article  Google Scholar 

  19. Tanford C (1980) The hydrophobic effect: formation of micelles and biological membrances. Wiley, New York

    Google Scholar 

  20. Nagarajan R, Ruckenstein E (1991) Theory of surfactant self-assembly: a predictive molecular thermodynamic approach. Langmuir 7:2934–2969

    Article  Google Scholar 

  21. Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437:640–647

    Article  Google Scholar 

  22. Dong R, Hao J (2010) Complex fluids of poly(oxyethylene) monoalkyl ether nonionic surfactants. Chem Rev 110:4978–5022

    Article  Google Scholar 

  23. Kekicheff P, Grabielle-Madelmont C, Ollivon M (1989) Phase diagram of sodium dodecyl sulfate-water system: 1. A calorimetric study. J Colloid Interface Sci 131:112–132

    Article  Google Scholar 

  24. Auvray X, Petipas C, Anthore R, Rico I, Lattes A (1989) X-ray diffraction study of mesophases of cetylmethylammonium bromide in water, formamide, and glycerol. J Phys Chem 93:7458–7464

    Article  Google Scholar 

  25. Pieranski P, Sittler L, Sotta P, Imperor-Clerc M (2001) Growth and shapes of a cubic lyotropic liquid crystal. Eur Phys J E 5:317–328

    Article  Google Scholar 

  26. Shrestha RG, Shrestha LK, Shrestha SC, Aramaki K (2008) Phase behavior and microstructure of nonionic fluorocarbon surfactant in aqueous system. J Phys Chem B 112:10520–10527

    Article  Google Scholar 

  27. Shrestha LK, Shrestha RG, Iwanaga T, Aramaki K (2007) Aqueous phase behavior of diglycerol fatty acid esters. J Dispers Sci Technol 28:883–891

    Article  Google Scholar 

  28. Shrestha RG, Rodriguez-Abreu C, Aramaki K (2009) Wormlike micelles in mixed amino acid surfactant/nonionic surfactant aqueous systems and the effect of added electrolyte. J Oleo Sci 58:243–254

    Article  Google Scholar 

  29. Shrestha LK, Kaneko M, Sato T, Acharya DP, Iwanaga T, Kunieda H (2006) Phase behavior of diglycerol fatty acid esters-nonpolar oil systems. Langmuir 22:1449–1454

    Article  Google Scholar 

  30. Shrestha LK, Sato T, Acharya DP, Iwanaga T, Aramaki K, Kunieda H (2006) Phase behavior of monoglycerol fatty acid ester in nonpolar oils: reverse rodlike micelles at elevated temperatures. J Phys Chem B 110:12266–12273

    Article  Google Scholar 

  31. Palazzo G (2013) Wormlike reverse micelles. Soft Matter 9:10668–10677

    Article  Google Scholar 

  32. Pileni MP (1989) Structure and reactivity in reverse micelles, vol 65. Pileni MP Ed., Elsevier, Amsterdam

    Google Scholar 

  33. Luisi PL, Strab BE (ed) (1987) Reverse micelles: biological and technological relevance of amphiphilic structures in apolar media. Plenum Press, New York

    Google Scholar 

  34. Shrestha LK, Shrestha RG, Aramaki K (2011) Growth control of nonionic reverse micelles by surfactant and solvent molecular architecture and water addition. J Nanosci Nanotechnol 11:4863–4873

    Article  Google Scholar 

  35. Scartazzini R, Luisi PL (1988) Organogels from lecithins. J Phys Chem 92:829–833

    Article  Google Scholar 

  36. Boutonnet M, Kizling J, Stenius P, Maire G (1982) The preparation of monodisperse colloidal metal particles from microemulsions. Colloids Surf 5:209–225

    Article  Google Scholar 

  37. Lisiecki I, Pileni MP (1993) Synthesis of copper metallic clusters using reverse micelles as microreactors. J Am Chem Soc 115:3887–3896

    Article  Google Scholar 

  38. Pileni MP (1997) Nanosized particles made in colloidal assemblies. Langmuir 13:3266–3276

    Article  Google Scholar 

  39. López-Quintela MA (2003) Synthesis of nanomaterials in microemulsions: formation mechanism and growth control. Curr Opin Colloid Interface Sci 8:137–144

    Article  Google Scholar 

  40. Pileni MP (2003) The role of soft colloidal templates in controlling sthe size and shape of inorganic nanocrystals. Nat Mater 2:145–150

    Article  Google Scholar 

  41. Pileni MP (1993) Reverse micelles: a microreactor. J Phys Chem 97:9661–9668

    Article  Google Scholar 

  42. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3889–3946

    Article  Google Scholar 

  43. Shrestha LK, Shrestha RG, Neus U, Rodriguez-Abreu C, Ariga K (2014) In-situ formation of silver nanoparticles using nonionic surfactant reverse micelles as nanoreactors. J Nanosci Nanotechnol 14:2238–2244

    Article  Google Scholar 

  44. Shrestha LK, Sato T, Aramaki K (2007) Phase behavior and self-organized structure of diglycerol monolaurate in different nonpolar organic solvents. Langmuir 23:6606–6613

    Article  Google Scholar 

  45. Shrestha LK, Aramaki K (2007) Phase behavior of diglycerol monomyristate in different nonpolar organic solvent systems. J Dispers Sci Technol 28:1236–1241

    Article  Google Scholar 

  46. Shrestha LK, Aramaki K, Kato H, Takase Y, Kunieda H (2006) Foaming properties of monoglycerol fatty acid ester in nonpolar oil system. Langmuir 22:8337–8345

    Article  Google Scholar 

  47. Kunieda H, Shrestha LK, Acharya DP, Kato H, Takase Y, Gutiérrez JM (2007) Superstable nonaqueous foams in diglycerol fatty acid esters-nonpolar oil systems. J Dispers Sci Technol 28:133–142

    Article  Google Scholar 

  48. Shrestha LK, Shrestha RG, Solans C, Aramaki K (2007) Effect of added water on the foaming properties of diglycerol fatty acid ester-oil systems. Langmuir 23:6918–6926

    Article  Google Scholar 

  49. Shrestha RG, Shrestha LK, Solans C, Gonzalez C, Aramaki K (2010) Nonaqueous foam with outstanding stability in diglycerol monolaurate/olive oil system. Colloid Surf A 353:157–165

    Article  Google Scholar 

  50. Brunner-Popela J, Glatter O (1997) Small-angle scattering of interacting particles. I. Basic principles of a global evaluation technique. J Appl Crystallogr 30:431–442

    Article  Google Scholar 

  51. Weyerich B, Brunner-Popela J, Glatter O (1999) Small-angle scattering of interacting particles. II. Generalized indirect fourier transformation under consideration of the effective structure factor for polydisperse systems. J Appl Crystallogr 32:197–209

    Article  Google Scholar 

  52. Shrestha LK, Dulle M, Glatter O, Aramaki K (2010) Structure of polyglycerol oleic acid ester nonionic surfactant reverse micelles in decane: Growth control by headgroup size. Langmuir 26:7015–7024

    Article  Google Scholar 

  53. Shrestha LK, Sato T, Aramaki K (2009) Intrinsic parameters for structural variation of reverse micelles in nonionic surfactant (glycerol α-monolaurate)/oil systems: a SAXS study. Phys Chem Chem Phys 11:4251–4259

    Article  Google Scholar 

  54. Shrestha LK, Sato T, Dulle M, Glatter O, Aramaki K (2010) Effect of lipophilic tail architecture and solvent engineering on the structure of trehalose-based nonionic surfactant reverse micelles. J Phys Chem B 114:12008–12017

    Article  Google Scholar 

  55. Stradner A, Glatter O, Schurtenberger P (2000) A hexanol-induced sphere-to-flexible cylinder transition in aqueous alkyl polyglucoside solutions. Langmuir 16:5354–5364

    Article  Google Scholar 

  56. Glatter O (1980) Determination of particle-size distribution functions from small-angle scattering data by means of the Indirect Transformation method. J Appl Crystallogr 13:7–11

    Article  Google Scholar 

  57. Glatter O (1979) The interpretation of real-space information from small-angle scattering experiments. J Appl Crystallogr 12:166–175

    Article  Google Scholar 

  58. Shrestha LK, Shrestha RG, Aramaki K (2011) Intrinsic parameters for the structure of nonionic reverse micelles in styrene: SAXS and rheometry studies. Langmuir 27:5862–5873

    Article  Google Scholar 

  59. Shrestha LK, Sato T, Aramaki K (2007) Shape, size and structure control of reverse micelles in diglycerol monomyristate nonionic surfactant system. J Phys Chem B 111:1664–1671

    Article  Google Scholar 

  60. Shrestha LK, Shrestha RG (2013) Noionic reverse micelles near the critical point. J Oleo Sci 62:1073–1081

    Article  Google Scholar 

  61. Shrestha LK, Shrestha RG, Aramaki K, Yoshikawa G, Ariga K (2013) Demonstration of solvent-induced one-dimensional nonionic reverse micell growth. J Phys Chem Lett 4:2585–2590

    Article  Google Scholar 

  62. Shrestha LK, Shrestha RG, Aramaki K, Hill JP, Ariga K (2012) Nonionic reverse micelle formulation and their microstructure transformations in an aromatic solvent ethylbenzene. Colloids Surf A 414:140–150

    Article  Google Scholar 

  63. Schurtenberger P, Scartazzini R, Magid LJ, Leser ME, Luis PL (1990) Structural and dynamic properties of polymer-like reverse micelles. J Phys Chem 94:3695–3701

    Article  Google Scholar 

  64. Dreiss CA (2007) Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter 3:956–970

    Article  Google Scholar 

  65. Shrestha RG, Shrestha LK, Aramaki K (2007) Formation of wormlike micelles in a mixed amino-acid based anionic surfactant and cationic surfactant systems. J Colloid Interface Sci 311:276–284

    Article  Google Scholar 

  66. Shrestha RG, Abezgauz L, Danino D, Sakai K, Sakai H, Abe M (2011) Structure and dynamics of poly(oxyethylene) cholesteryl ether wormlike micelles: rheometry, SAXS, and Cryo-TEM studies. Langmuir 27:12877–12883

    Article  Google Scholar 

  67. Yu Z-J, Neuman RD (1994) Giant rodlike reverse micelles formed by sodium bis(2-ethylhexyl) phosphate in n-heptane. Langmuir 10:2553–2558

    Article  Google Scholar 

  68. Tung S-H, Huang Y-E, Raghavan SR (2006) A new reverse wormlike micellar system: mixture of bile salt and lecithin in organic liquids. J Am Chem Soc 128:5751–5756

    Article  Google Scholar 

  69. Kumar R, Ketner AM, Raghavan SR (2010) Nonaqueous photorheological fluids based on light-responsive reverse wormlike micelles. Langmuir 26:5405–5411

    Article  Google Scholar 

  70. Tung S-H, Huang Y-E, Raghavan SR (2007) Constrasting effects of temperature on the rheology of normal and reverse wormlike micelles. Langmuir 23:372–376

    Article  Google Scholar 

  71. Shrestha RG, Agari N, Tsuchiya K, Sakamoto K, Saakai K, Abe M, Sakai H (2014) Phosphatidylcholine-based nonaqueous photorheological fluids: effect of geometry and solvent. Colloid Polym Sci 292:1599–1609

    Article  Google Scholar 

  72. Hashizaki K, Chiba T, Taguchi H, Saito Y (2009) Highly viscoelastic reverse worm-like micelles formed in a lecithin/urea/oil system. Colloid Polym Sci 287:927–932

    Article  Google Scholar 

  73. Hashizaki K, Taguchi H, Saito Y (2009) A novel reverse worm-like micelle from a lecithin/sucrose fatty acid ester/oil system. Colloid Polym Sci 287:1099–1105

    Article  Google Scholar 

  74. Hashizaki K, Sakanishi Y, Yako S, Tsusaka H, Imai M, Taguchi H, Saito Y (2012) New lecithin organogels from lecithin/polyglycerol/oil systems. J Oleo Sci 61:267–275

    Article  Google Scholar 

  75. Shrestha LK, Yamamoto Y, Arima S, Aramaki K (2011) Charge-free reverse wormlike micelles in nonaqueous media. Langmuir 27:2340–2348

    Article  Google Scholar 

  76. Rehage H, Hoffmann H (1988) Rheological properties of viscoelastic surfactant system. J Phys Chem 92:4712–4719

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lok Kumar Shrestha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Shrestha, L.K., Ariga, K. (2017). Stimuli-Responsive Charge-Free Reverse Micelles in Non-Aqueous Media. In: Kawai, T., Hashizume, M. (eds) Stimuli-Responsive Interfaces. Springer, Singapore. https://doi.org/10.1007/978-981-10-2463-4_4

Download citation

Publish with us

Policies and ethics