Skip to main content

Stimuli-Responsible Viscoelastic Surfactant Solutions

  • Chapter
  • First Online:
  • 670 Accesses

Abstract

In this chapter, viscoelasticity control of aqueous solutions using novel stimuli-responsive surfactants is described. The formation of viscoelastic wormlike micellar solutions by these surfactants is switchable by external stimuli such as light irradiation, redox reaction, and pH change. This chapter consists of following three sections: (1) photochemical control of viscoelasticity using (a) photoresponsive azobenzene-modified surfactants, (b) a photoresponsive counter ion, and (c) a novel photocleavable surfactant. (2) Redox-responsive wormlike micellar solution using a ferrocenyl surfactant. (3) pH-responsive wormlike micellar solution by acylglutamic acid-alkylamine complex. Formation-disintegration control of wormlike micelles, and thus, the solution viscosity change, using these stimuli-responsive surfactants, may lead to applications for controlled release of fragrances, flavors, and drugs incorporated into the micelles, and for prevention of printer ink bleeding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ali M, Jha M, Das SK, Saha SK (2009) Hydrogen-bond-induced microstructural transition of ionic micelles in the presence of neutral naphthols: pH dependent morphology and location of surface activity. J Phys Chem B 113:15563–15571

    Article  Google Scholar 

  2. Scarzello M, Klijn JE, Wagenaar A, Stuart MCA, Hulst R, Engberts JBFN (2006) pH-dependent aggregation properties of mixtures of sugar-based gemini surfactants with phospholipids and single-tailed surfactants. Langmuir 22:2558–2568

    Article  Google Scholar 

  3. Tobita K, Sakai H, Kondo Y, Yoshino N, Iwahashi M, Momozawa N, Nishiyama K, Abe M (1997) Thermoreponsive viscoelasticity of sodium 1-oxo-1-[4-(tridecafluorohexyl) phenyl]-2-hexanesulfonate aqueous solutions. Langmuir 13:5054–5055

    Article  Google Scholar 

  4. Abe M, Tobita K, Sakai H, Kamogawa K, Momozawa N, Kondo Y, Yoshino N (2000) Thermoresponsive viscoelasticity of concentrated solutions with a fluorinated hybrid surfactant. Colloids Surf A 167:47–60

    Article  Google Scholar 

  5. Aydogan N, Abbott NL (2001) Comparison of the surface activity and bulk aggregation of ferrocenyl surfactants with cationic and anionic headgroups. Langmuir 17:5703–5706

    Article  Google Scholar 

  6. Anton P, Heinze J, Laschewsky A (1993) Redox-active monomeric and polymeric surfactants. Langmuir 9:77–85

    Article  Google Scholar 

  7. Eastoe J, Vesperinas A (2005) Self-assembly of light-sensitive surfactants. Soft Matter 1:338–347

    Article  Google Scholar 

  8. Zhao Y (2012) Light-responsive block copolymer micelles. Macromolecules 45:3647–3657

    Article  Google Scholar 

  9. Takei T, Sakai H, Kondo Y, Yoshino N, Abe M (2001) Electrochemical control of solubilization using a ferrocene-modified nonionic surfactant. Colloids Surf, A 183–185:757–765

    Google Scholar 

  10. Kakizawa Y, Sakai H, Yamaguchi A, Kondo Y, Yoshino N, Abe M (2001) Electrochemical control of vesicle formation with a double-tailed cationic surfactant bearing ferrocenyl moieties. Langmuir 17:8044–8048

    Article  Google Scholar 

  11. Kakizawa Y, Sakai H, Nishiyama K, Abe M, Shouji H, Kondo Y, Yoshino N (1996) Solution properties of double-tailed cationic surfactants having ferrocenyl groups in their hydrophobic moieties. Langmuir 12:921–924

    Article  Google Scholar 

  12. Sakai H, Imamura H, Kondo Y, Yoshino N, Abe M (2004) Reversible control of vesicle formation using electrochemical reaction. Colloids Surf, A 232:221–228

    Google Scholar 

  13. Orihara Y, Matsumura A, Saito Y, Ogawa N, Saji T, Yamaguchi A, Sakai H, Abe M (2001) Reversible release control of an oily substance using photoresponsive micelles. Langmuir 17:6072–6076

    Article  Google Scholar 

  14. Sakai H, Matsumura A, Saji T, Abe M (1999) Photochemical switching of vesicle formation using an azobenzene-modified surfactant. J Phys Chem 103:10737–10740

    Article  Google Scholar 

  15. Matsumura A, Tsuchiya K, Torigoe K, Sakai K, Sakai H, Abe M (2011) Photochemical control of molecular assembly formation in a catanionic surfactant system. Langmuir 27:1610–1617

    Article  Google Scholar 

  16. Sakai H, Ebana H, Sakai K, Tsuchiya K, Ohkubo T, Abe M (2007) Photo-isomerization of spiropyran-modified cationic surfactants. J Colloid Interface Sci 316:1027–1030

    Article  Google Scholar 

  17. Akamatsu M, FitzGerald P, Shiina M, Misono T, Tsuchiya K, Sakai K, Abe M, Warr GG, Sakai H (2015) Micelle structure in a photo-responsive surfactant with and without solubilized ethylbenzene from small-angle neutron scattering. J Phys Chem C 119:5904–5910

    Article  Google Scholar 

  18. Shikata T, Hirata H, Kotaka T (1987) Micelle formation of detergent molecules in aqueous media: viscoelastic properties of aqueous cetyltrimethylammonium bromide solutions. Langmuir 3:1081–1086

    Article  Google Scholar 

  19. Naito N, Acharya DP, Tanimura J, Kunieda H (2005) Phase behavior of polyoxyethylene phytosterol/polyoxyethylene dodecylether/water systems. J Oleo Sci 54:7–13

    Article  Google Scholar 

  20. Sakai H, Orihara Y, Kodashima H, Matsumura A, Ohkubo T, Tsuchiya K, Abe M (2005) Photoinduced reversible change of fluid viscosity. J Am Chem Soc 127:13454–13455

    Article  Google Scholar 

  21. Takahashi Y, Fukuyasu K, Horiuchi T, Kondo Y, Stroeve P (2014) Photoinduced demulsification of emulsions using a photoresponsive gemini surfactant. Langmuir 30:41–47

    Article  Google Scholar 

  22. Shin JY, Abbott NL (1999) Using light to control dynamic surface tensions of aqueous solutions of water soluble surfactants. Langmuir 15:4404–4410

    Article  Google Scholar 

  23. Kumar R, Raghavan SR (2009) Photogelling fluids based on light-activated growth of zwitterionic wormlike micelles. Soft Matter 5:797–803

    Article  Google Scholar 

  24. Irie M, Hirano Y, Hashimoto S, Hayashi K (1981) Photoresponsive polymers. 2. Reversible solution viscosity change of polyamides having azobenzene residues in the main chain. Macromolecules 14:262–267

    Article  Google Scholar 

  25. Koumura N, Kudo M, Tamaoki N (2004) Photocontrolled gel-to-sol-to-gel phase transitioning of meta-substituted azobenzene bisurethanes through the breaking and reforming of hydrogen bonds. Langmuir 20:9897–9900

    Article  Google Scholar 

  26. Shikata T, Hirata H, Kotaka T (1988) Micelle formation of detergent molecules in aqueous media. 2. Role of free salicylate ions on viscoelastic properties of aqueous cetyltrimethylammonium bromide-sodium salicylate solutions. Langmuir 4:354–359

    Article  Google Scholar 

  27. Shrestha RG, Agari N, Tsuchiya K, Sakamoto K, Sakai K, Abe M, Sakai H (2014) Phosphatidylcholine-based nonaqueous photorheological fluids: effect of geometry and solvent. Colloid Polym Sci 292:1599–1609

    Article  Google Scholar 

  28. Sakai H, Taki S, Tsuchiya K, Matsumura A, Sakai K, Abe M (2012) Photochemical control of viscosity using sodium cinnamate as a photoswitchable molecule. Chem Lett 41:247–248

    Article  Google Scholar 

  29. Aikawa S, Shrestha RG, Ohmori T, Fukukita Y, Tezuka T, Endo T, Torigoe K, Tsuchiya K, Sakamoto K, Sakai K, Abe M, Sakai H (2013) Photorheological response of aqueous wormlike micelles with photocleavable surfactant. Langmuir 29:5668–5676

    Article  Google Scholar 

  30. Sakai H, Aikawa S, Matsuda W, Ohmori T, Fukukita Y, Tezuka Y, Matsumura A, Torigoe K, Tsuchiya K, Arimitsu K, Sakamoto K, Sakai K, Abe M (2012) A cinnamic acid-type photo-cleavable surfactant. J Colloid Interface Sci 376:160–164

    Article  Google Scholar 

  31. Winslow WM (1949) Induced fibration of suspensions. J Appl Phys 20:1137–1140

    Article  Google Scholar 

  32. Halsey TC (1992) Electrorheological fluids. Science 258:761–766

    Article  Google Scholar 

  33. Anton P, Heinze J, Laschewsky A (1993) Redox-active monomeric and polymeric surfactants. Langmuir 9:77–85

    Article  Google Scholar 

  34. Hoshino K, Saji T (1987) Electrochemical formation of an organic thin film by disruption of micelles. J Am Chem Soc 109:5881–5883

    Article  Google Scholar 

  35. Saji T, Hoshino K, Ishii Y, Goto M (1991) Formation of organic thin films by electrolysis of surfactants with the ferrocenyl moiety. J Am Chem Soc 113:450–456

    Article  Google Scholar 

  36. Tsuchiya K, Orihara Y, Kondo Y, Yoshino N, Ohkubo T, Sakai H, Abe M (2004) Control of vscoelasticity using redox reaction. J Am Chem Soc 126:12282–12283

    Article  Google Scholar 

  37. Soltero JFA, Puig JE, Manero O (1996) Rheology of the cetyltrimethylammonium tosilate–water system. 2. Linear viscoelastic regime. Langmuir 12:2654–2662

    Article  Google Scholar 

  38. Verma G, Aswal VK, Hassan P (2009) pH-responsive self-assembly in an aqueous mixture of surfactant and hydrophobic amino acid mimic. Soft Matter 5:2919–2927

    Article  Google Scholar 

  39. Chu Z, Feng Y (2010) pH-switchable wormlike micelles. Chem Commun 46:9028–9030

    Article  Google Scholar 

  40. Lu H, Shi Q, Huang Z (2014) pH-responsive anionic wormlike micelle based on sodium oleate induced by NaCl. J Phys Chem B 118:12511–12517

    Article  Google Scholar 

  41. Sakai K, Nomura K, Shrestha RG, Endo T, Sakamoto K, Sakai H, Abe M (2012) Wormlike micelle formation by acylglutamic acid with alkylamines. Langmuir 28:17617–17622

    Article  Google Scholar 

  42. Shrestha RG, Shrestha LK, Aramaki K (2007) Formation of wormlike micelle in a mixed amino-acid based anionic surfactant and cationic surfactant systems. J Colloid Interface Sci 311:276–284

    Article  Google Scholar 

  43. Shrestha RG, Shrestha LK, Aramaki K (2008) Wormlike micelles in mixed amino acid-based anionic/nonionic surfactant systems. J Colloid Interface Sci 322:596–604

    Article  Google Scholar 

  44. Shrestha RG, Shrestha LK, Aramaki K (2009) Rheology of wormlike micelles in aqueous systems of a mixed amino acid-based anionic surfactant and cationic surfactant. Colloid Polym Sci 287:1305–1315

    Article  Google Scholar 

  45. Aramaki K, Iemoto S, Ikeda N, Saito K (2010) Composition-insensitive highly viscous wormlike micellar solutions formed in anionic and cationic surfactant systems. J Oleo Sci 59:203–212

    Article  Google Scholar 

  46. Shrestha RG, Shrestha LK, Matsunaga T, Shibayama M, Aramaki K (2011) Lipophilic tail architecture and molecular structure of neutralizing agent for the controlled rheology of viscoelastic fluid in amino acid-based anionic surfactant system. Langmuir 27:2229–2236

    Article  Google Scholar 

  47. Shrestha RG, Nomura K, Yamamoto M, Yamawaki Y, Tamura Y, Sakai K, Sakamoto K, Sakai H, Abe M (2012) Peptide-based gemini amphiphiles: phase behavior and rheology of wormlike micelles. Langmuir 28:15472–15481

    Article  Google Scholar 

Download references

Acknowledgments

Studies reported by the authors were partially supported by Grant-in-Aid for Scientific Research (KAKENHI, No. 22107003) on Innovative Areas of “Fusion Materials” (No. 2206) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT). The authors are also thankful to Prof. Masahiko Abe, Prof. Tetsuo Saji, Prof. Yukishige Kondo, Dr. Yasushi Kakizawa, and Dr. Atsutoshi Matsumura for their continuous support and fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Sakai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sakai, H., Tsuchiya, K., Sakai, K. (2017). Stimuli-Responsible Viscoelastic Surfactant Solutions. In: Kawai, T., Hashizume, M. (eds) Stimuli-Responsive Interfaces. Springer, Singapore. https://doi.org/10.1007/978-981-10-2463-4_3

Download citation

Publish with us

Policies and ethics