Skip to main content

Photo-Induced Demulsification

  • Chapter
  • First Online:
Stimuli-Responsive Interfaces

Abstract

Demulsification is an aggressive phase-separation phenomenon of stable emulsions. Several studies have examined demulsification by chemical reactions using external stimuli, such as temperature variation, pH variation, and light irradiation. This study focused on the interfacial and emulsification properties of light-responsive surfactants because the use of light as an external stimulus is relatively simple. This chapter presents an overview of the photo-induced demulsification of emulsions prepared using light-responsive surfactants containing an azobenzene skeleton. Stable emulsions are obtained when mixtures of n-octane and aqueous solutions of azobenzene-containing surfactants are homogenized. Ultraviolet irradiation of the stable emulsions induces complete phase separation of the octane and aqueous surfactant solution phases. The phase separation, i.e., demulsification, results from a change in the interfacial properties, such as occupied areas per molecule and interfacial tension, of the light-responsive surfactants at the oil/water interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu X, Abbott NL (2009) Spatial and temporal control of surfactant systems. J Colloid Interface Sci 339(1):1–18

    Article  Google Scholar 

  2. Eastoe J, Vesperinas A (2005) Self-assembly of light-sensitive surfactants. Soft Matter 1(5):338–347

    Article  Google Scholar 

  3. Brown P, Butts CP, Eastoe J (2013) Stimuli-responsive surfactants. Soft Matter 9(8):2365–2374

    Article  Google Scholar 

  4. Irie M (2000) Diarylethenes for memories and switches. Chem Rev 100(5):1685–1716

    Article  Google Scholar 

  5. Tian H, Yang S (2004) Recent progresses on diarylethene based photochromic switches. Chem Soc Rev 33(2):85–97

    Article  Google Scholar 

  6. Berkovic G, Krongauz V, Weiss V (2000) Spiropyrans and Spirooxazines for memories and switches. Chem Rev 100(5):1741–1754

    Article  Google Scholar 

  7. Tamai N, Miyasaka H (2000) Ultrafast dynamics of photochromic systems. Chem Rev 100(5):1875–1890

    Article  Google Scholar 

  8. Cicciarelli BA, Hatton TA, Smith KA (2007) Dynamic surface tension behavior in a photoresponsive surfactant system. Langmuir 23(9):4753–4764

    Article  Google Scholar 

  9. Shin JY, Abbott NL (1999) Using light to control dynamic surface tensions of aqueous solutions of water soluble surfactants. Langmuir 15(13):4404–4410

    Article  Google Scholar 

  10. Chevallier E, Mamane A, Stone HA, Tribet C, Lequeux F, Monteux C (2011) Pumping-out photo-surfactants from an air-water interface using light. Soft Matter 7(17):7866–7874

    Article  Google Scholar 

  11. Chevallier E, Monteux C, Lequeux F, Tribet C (2012) Photofoams: remote control of foam destabilization by exposure to light using an azobenzene surfactant. Langmuir 28(5):2308–2312

    Article  Google Scholar 

  12. Shang T, Smith KA, Hatton TA (2003) Photoresponsive surfactants exhibiting unusually large, reversible surface tension changes under varying illumination conditions. Langmuir 19(26):10764–10773

    Article  Google Scholar 

  13. Kumar GS, Neckers DC (1989) Photochemistry of azobenzene-containing polymers. Chem Rev 89(8):1915–1925

    Article  Google Scholar 

  14. Sastre AM, Kumar A, Shukla JP, Singh RK (1998) Improved techniques in liquid membrane separations: an overview. Sep Purif Rev 27(2):213–298

    Article  Google Scholar 

  15. Allende D, Cambiella Á, Benito JM, Pazos C, Coca J (2008) Destabilization-enhanced centrifugation of metalworking oil-in-water emulsions: effect of demulsifying agents. Chem Eng Technol 31(7):1007–1014

    Article  Google Scholar 

  16. Ferreira BMS, Ramalho JBVS, Lucas EF (2013) Demulsification of water-in-crude oil emulsions by microwave radiation: effect of aging, demulsifier addition, and selective heating. Energy Fuels 27(2):615–621

    Article  Google Scholar 

  17. Kundu P, Agrawal A, Mateen H, Mishra IM (2013) Stability of oil-in-water macro-emulsion with anionic surfactant: effect of electrolytes and temperature. Chem Eng Sci 102:176–185

    Article  Google Scholar 

  18. Silva EB, Santos D, Alves DRM, Barbosa MS, Guimarães RCL, Ferreira BMS, Guarnieri RA, Franceschi E, Dariva C, Santos AF, Fortuny M (2013) Demulsification of heavy crude oil emulsions using ionic liquids. Energy Fuels 27(10):6311–6315

    Article  Google Scholar 

  19. Liu H, Wang C, Zou S, Wei Z, Tong Z (2012) Simple, reversible emulsion system switched by pH on the basis of chitosan without any hydrophobic modification. Langmuir 28(30):11017–11024

    Article  Google Scholar 

  20. Morse AJ, Dupin D, Thompson KL, Armes SP, Ouzineb K, Mills P, Swart R (2012) Novel pickering emulsifiers based on pH-responsive poly(tert-butylaminoethyl methacrylate) latexes. Langmuir 28(32):11733–11744

    Article  Google Scholar 

  21. Binks BP, Murakami R, Armes SP, Fujii S (2006) Effects of pH and salt concentration on oil-in-water emulsions stabilized solely by nanocomposite microgel particles. Langmuir 22(5):2050–2057

    Article  Google Scholar 

  22. Read ES, Fujii S, Amalvy JI, Randall DP, Armes SP (2005) Effect of varying the oil phase on the behavior of pH-responsive latex-based emulsifiers: demulsification versus transitional phase inversion. Langmuir 21(4):1662–1662

    Article  Google Scholar 

  23. Fujii S, Cai Y, Weaver JVM, Armes SP (2005) Syntheses of shell cross-linked micelles using acidic ABC triblock copolymers and their application as pH-responsive particulate emulsifiers. J Am Chem Soc 127(20):7304–7305

    Article  Google Scholar 

  24. Yi C, Liu N, Zheng J, Jiang J, Liu X (2012) Dual-responsive poly(styrene-alt-maleic acid)-graft-poly(N-isopropyl acrylamide) micelles as switchable emulsifiers. J Colloid Interface Sci 380(1):90–98

    Article  Google Scholar 

  25. Chen Q, Cao X, Liu H, Zhou W, Qin L, An Z (2013) pH-responsive high internal phase emulsions stabilized by core cross-linked star (CCS) polymers. Polym Chem 4(15):4092–4102

    Article  Google Scholar 

  26. Morse AJ, Armes SP, Thompson KL, Dupin D, Fielding LA, Mills P, Swart R (2013) Novel Pickering emulsifiers based on pH-responsive poly(2-(diethylamino)ethyl methacrylate) latexes. Langmuir 29(18):5466–5475

    Article  Google Scholar 

  27. Eastoe J, Sanchez-Dominguez M, Cumber H, Burnett G, Wyatt P, Heenan RK (2003) Photoresponsive microemulsions. Langmuir 19(17):6579–6581

    Article  Google Scholar 

  28. Eastoe J, Sanchez Dominguez M, Cumber H, Wyatt P, Heenan RK (2004) Light-sensitive microemulsions. Langmuir 20(4):1120–1125

    Article  Google Scholar 

  29. Eastoe J, Wyatt P, Sanchez-Dominguez M, Vesperinas A, Paul A, Heenan RK, Grillo I (2005) Photo-stabilised microemulsions. Chem Commun 22:2785–2786

    Article  Google Scholar 

  30. Tabor RF, Oakley RJ, Eastoe J, Faul CFJ, Grillo I, Heenan RK (2009) Reversible light-induced critical separation. Soft Matter 5(1):78–80

    Article  Google Scholar 

  31. Porcar I, Perrin P, Tribet C (2001) UV-visible light: a novel route to tune the type of an emulsion. Langmuir 17(22):6905–6909

    Article  Google Scholar 

  32. Khoukh S, Perrin P, Bes de Berc F, Tribet C (2005) Reversible light-triggered control of emulsion type and stability. ChemPhysChem 6(10):2009–2012

    Article  Google Scholar 

  33. Khoukh S, Tribet C, Perrin P (2006) Screening physicochemical parameters to tuning the reversible light-triggered control of emulsion type. Colloids Surf A 288(1–3):121–130

    Article  Google Scholar 

  34. Takahashi Y, Fukuyasu K, Horiuchi T, Kondo Y, Stroeve P (2014) Photoinduced demulsification of emulsions using a photoresponsive gemini surfactant. Langmuir 30(1):41–47

    Article  Google Scholar 

  35. Takahashi Y, Koizumi N, Kondo Y (2016) Active demulsification of photoresponsive emulsions using cationic-anionic surfactant mixtures. Langmuir. doi:10.1021/acs.langmuir.5b03912

    Google Scholar 

  36. Karthaus O, Shimomura M, Hioki M, Tahara R, Nakamura H (1996) Reversible photomorphism in surface monolayers. J Am Chem Soc 118(38):9174–9175

    Article  Google Scholar 

  37. Faure D, Gravier J, Labrot T, Desbat B, Oda R, Bassani DM (2005) Photoinduced morphism of gemini surfactant aggregates. Chem Commun 9:1167–1169

    Article  Google Scholar 

  38. Ahmad RK, Faure D, Goddard P, Oda R, Bassani DM (2009) Photosensitive vesicles from a cis-azobenzene gemini surfactant show high photoresponse. Org Biomol Chem 7(15):3173–3178

    Article  Google Scholar 

  39. Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19(1–2):35–50

    Article  Google Scholar 

  40. Wagner C (1961) Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Elektrochem 65(7–8):581–591

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukishige Kondo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Takahashi, Y., Kondo, Y. (2017). Photo-Induced Demulsification. In: Kawai, T., Hashizume, M. (eds) Stimuli-Responsive Interfaces. Springer, Singapore. https://doi.org/10.1007/978-981-10-2463-4_2

Download citation

Publish with us

Policies and ethics