Advertisement

Modeling Trends in Solid and Hazardous Waste Management

The Change from Aerobic to Anaerobic Land Filling and the Increase of Correspondent Emissions and Expenses
Chapter
  • 694 Downloads

Abstract

In this chapter, we discuss the main policy to waste management destination, considering the immediate sanitation concern in developing countries. From the analysis of literature and many waste management projects presented for United Nation registration as clean development mechanism (CDM), we draw some deductions. Because of the regulatory shortcomings and pitfalls; landfill sites configuration from aerobic unmanaged to anaerobic managed; poor administrative activity; and the increase of costs and the capital shortage, the change can lead to a greater overall GHG emission. Thus, the recent studies and the world reports about this issue indicate the regulatory environment as the first bottleneck to be aware of to alleviate the initiatives barriers.

Keywords

Landfilling GHG CDM Barriers 

References

  1. Allesch A, Brunner PH (2014) Assessment methods for solid waste management: a literature review. Waste Manag Res 32:461–473. doi: 10.1177/0734242X14535653 CrossRefGoogle Scholar
  2. Al-Yaqout AF, Hamoda MF (2002) Report: management problems of solid waste landfills in Kuwait. Waste Manag Res 20:328–331CrossRefGoogle Scholar
  3. Amini HR, Reinhart DR, Niskanen A (2013) Comparison of first-order-decay modeled and actual field measured municipal solid waste landfill methane data. Waste Manag 33:2720–2728. doi: 10.1016/j.wasman.2013.07.025 CrossRefGoogle Scholar
  4. Andersen FM, Larsen H, Skovgaard M et al (2007) A European model for waste and material flows. Resour Conserv Recycl 49:421–435. doi: 10.1016/j.resconrec.2006.05.011 CrossRefGoogle Scholar
  5. Aydi A, Abichou T, Zairi M, Sdiri A (2015) Assessment of electrical generation potential and viability of gas collection from fugitive emissions in a Tunisian landfill. Energy Strateg Rev 8:8–14. doi: 10.1016/j.esr.2015.06.002 CrossRefGoogle Scholar
  6. Bartl A (2011) Barriers towards achieving a zero waste society. Waste Manag 31:2369–2370. doi: 10.1016/j.wasman.2011.09.013 CrossRefGoogle Scholar
  7. Bartl A (2014) Moving from recycling to waste prevention: a review of barriers and enables. Waste Manag Res 32:3–18. doi: 10.1177/0734242X14541986
  8. Barton JR, Issaias I, Stentiford EI (2008) Carbon–making the right choice for waste management in developing countries. Waste Manag 28:690–698. doi: 10.1016/j.wasman.2007.09.033 CrossRefGoogle Scholar
  9. Batllevell M, Hanf K (2008) The fairness of PAYT systems: some guidelines for decision-makers. Waste Manag 28:2793–2800. doi: 10.1016/j.wasman.2008.02.031 CrossRefGoogle Scholar
  10. Baumol W, Oats W (1988) The theory of environmental policy, 2nd edn. Cambridge University PressGoogle Scholar
  11. Bleck D, Wettberg W (2012) Waste collection in developing countries–tackling occupational safety and health hazards at their source. Waste Manag 32:2009–2017. doi: 10.1016/j.wasman.2012.03.025 CrossRefGoogle Scholar
  12. Brasil (2010) LEI No 12.305, DE 2 DE AGOSTO DE 2010. Institui a Política Nacional de Resíduos Sólidos. Congresso NacionalGoogle Scholar
  13. Brunner PH, Fellner J (2007) Setting priorities for waste management strategies in developing countries. Waste Manag Res 25:234–240. doi: 10.1177/0734242X07078296 CrossRefGoogle Scholar
  14. Bufoni AL, Carvalho MS, Oliveira LB, Rosa LP (2014) The emerging issue of solid waste disposal sites emissions in developing countries: the case of Brazil. J Environ Prot (Irvine, Calif) 5:886–894. doi: 10.4236/jep.2014.510090
  15. Bufoni AL, Oliveira LB, Rosa LP (2015) The financial attractiveness assessment of large waste management projects registered as clean development mechanism. Waste Manag 43:497–508. doi: 10.1016/j.wasman.2015.06.030 CrossRefGoogle Scholar
  16. Bufoni AL, Oliveira LB, Rosa LP (2016) The declared barriers of the large developing countries waste management projects: the STAR model. Waste Manage 52. http://doi.org/10.1016/j.wasman.2016.03.023
  17. Carvalho MS, Rosa LP, Bufoni AL, Ferreira AC de S (2011) The issue of sustainability and disclosure. a case study of selective garbage collection by the urban cleaning service of the city of Rio de Janeiro, Brazil–COMLURB. Resour Conserv Recycl 1030–1038. doi: 10.1016/j.resconrec.2011.05.015
  18. Carvalho MS, Rosa LP, Bufoni AL, Oliveira LB (2012) Putting solid household waste to sustainable use: a case study in the city of Rio de Janeiro, Brazil. Waste Manag ResGoogle Scholar
  19. Chung SS, Lo CWH (2008) Local waste management constraints and waste administrators in China. Waste Manag 28:272–281. doi: 10.1016/j.wasman.2006.11.013 CrossRefGoogle Scholar
  20. Ciplak N, Barton JR (2012) A system dynamics approach for healthcare waste management: a case study in Istanbul Metropolitan City, Turkey. Waste Manag Res 30:576–586. doi: 10.1177/0734242X12443405 CrossRefGoogle Scholar
  21. COP 10 (2011) BC-10/2: strategic framework for the implementation of the Basel Convention for 2012–2021Google Scholar
  22. Corselli-Nordblad L (2014) In 2012, 42 % of treated municipal waste was recycled or composted. Eurostat News Release 48–50Google Scholar
  23. DoBerl G, Huber R, Brunner PH et al (2002) Long-term assessment of waste management options—a new, integrated and goal-oriented approach. Waste Manag Res 20:311–327. doi: 10.1177/0734247X0202000402 CrossRefGoogle Scholar
  24. Donovan SM, Pan Jilang, Bateson T et al (2011) Gas emissions from biodegradable waste in United Kingdom landfills. Waste Manag Res 29:69–76. doi: 10.1177/0734242X10389510 CrossRefGoogle Scholar
  25. Dubois M (2013) Towards a coherent European approach for taxation of combustible waste. Waste Manag 33:1776–1783. doi: 10.1016/j.wasman.2013.03.015 CrossRefGoogle Scholar
  26. Echart J, Ghebremichael K, Khatri K, et al (2012) The future of water in African Cities : why waste water? Integrated Urban Water Management, Background ReportGoogle Scholar
  27. El-Fadel M, Abi-Esber L, Salhab S (2012) Emission assessment at the Burj Hammoud inactive municipal landfill: viability of landfill gas recovery under the clean development mechanism. Waste Manag 32:2106–2114. doi: 10.1016/j.wasman.2011.12.027 CrossRefGoogle Scholar
  28. EPA (2011) Criteria for municipal solid waste landfills. Code of Federal Regulations, Environmental Protection Agency, Protection of EnvironmentGoogle Scholar
  29. Eriksson O, Bisaillon M (2011) Multiple system modelling of waste management. Waste Manag 31:2620–2630. doi: 10.1016/j.wasman.2011.07.007 CrossRefGoogle Scholar
  30. European Commission (2008) Directive 2008/98/EC on waste and repealing certain directives. European Parliament and of the CouncilGoogle Scholar
  31. European Commission (2012) Preparing a waste management planGoogle Scholar
  32. European Commission (2015) Waste prevention programmes. http://scp.eionet.europa.eu/facts/WPP. Accessed 17 Dec 2015
  33. European Environment Agency (2013) Managing municipal solid waste—a review of achievements in 32 European countiesGoogle Scholar
  34. Gentil EC, Damgaard A, Hauschild M et al (2010) Models for waste life cycle assessment: review of technical assumptions. Waste Manag 30:2636–2648. doi: 10.1016/j.wasman.2010.06.004 CrossRefGoogle Scholar
  35. Godfrey L, Scott D, Trois C (2013) Caught between the global economy and local bureaucracy: the barriers to good waste management practice in South Africa. Waste Manag Res 31:295–305. doi: 10.1177/0734242X12470204 CrossRefGoogle Scholar
  36. Guerrero LA, Maas G, Hogland W (2013) Solid waste management challenges for cities in developing countries. Waste Manag 33:220–232. doi: 10.1016/j.wasman.2012.09.008 CrossRefGoogle Scholar
  37. Han H, Qian G, Long J, Li S (2009) Comparison of two different ways of landfill gas utilization through greenhouse gas emission reductions analysis and financial analysis. Waste Manag Res 27:922–927. doi: 10.1177/0734242X09349762 CrossRefGoogle Scholar
  38. Hanrahan D, Srivastava S, Ramakrishna AS (2006) Improving management of municipal solid waste in India : overview and challengesGoogle Scholar
  39. Hoornweg D, Bhada-Tata P (2012) What a waste : a global review of solid waste managementGoogle Scholar
  40. Hoornweg D, Giannelli N (2007) Managing municipal solid waste in latin America and the Caribbean : integrating the private sector. Harnessing IncentivesGoogle Scholar
  41. Inanc B, Idris A, Terazono A, Sakai S (2004) Development of a database of landfills and dump sites in Asian countries. J Mater Cycles Waste Manag. doi: 10.1007/s10163-004-0116-z
  42. IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories, vol 5. WasteGoogle Scholar
  43. Kardooni R, Yusoff SB, Kari FB (2016) Renewable energy technology acceptance in Peninsular Malaysia. Energy Policy 88:1–10. doi: 10.1016/j.enpol.2015.10.005 CrossRefGoogle Scholar
  44. Karmperis AC, Aravossis K, Tatsiopoulos IP, Sotirchos A (2013) Decision support models for solid waste management: review and game-theoretic approaches. Waste Manag 33:1290–1301. doi: 10.1016/j.wasman.2013.01.017 CrossRefGoogle Scholar
  45. Laurent A, Bakas I, Clavreul J et al (2014) Review of LCA studies of solid waste management systems–part I: lessons learned and perspectives. Waste Manag 34:573–588. doi: 10.1016/j.wasman.2013.10.045 CrossRefGoogle Scholar
  46. Ljunggren M (2000) Modelling national solid waste management. Waste Manag Res 18:525–537. doi: 10.1177/0734242X0001800603 CrossRefGoogle Scholar
  47. Lohri CR, Camenzind EJ, Zurbrügg C (2014) Financial sustainability in municipal solid waste management—costs and revenues in Bahir Dar, Ethiopia. Waste Manag 34:542–552. doi: 10.1016/j.wasman.2013.10.014 CrossRefGoogle Scholar
  48. Loureiro SM, Rovere ELL, Mahler CF (2013) Analysis of potential for reducing emissions of greenhouse gases in municipal solid waste in Brazil, in the state and city of Rio de Janeiro. Waste Manag 33:1302–1312. doi: 10.1016/j.wasman.2013.01.024 CrossRefGoogle Scholar
  49. MacKenzie IA, Ohndorf M (2016) Coasean bargaining in the presence of Pigouvian taxation. J Environ Econ Manage 75:1–11. doi: 10.1016/j.jeem.2015.09.003 CrossRefGoogle Scholar
  50. Maier S, Oliveira LB (2014) Economic feasibility of energy recovery from solid waste in the light of Brazil׳s waste policy: the case of Rio de Janeiro. Renew Sustain Energy Rev 35:484–498. doi: 10.1016/j.rser.2014.04.025 CrossRefGoogle Scholar
  51. Malkow T (2004) Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal. Waste Manag 24:53–79. doi: 10.1016/S0956-053X(03)00038-2 CrossRefGoogle Scholar
  52. Manaf LA, Samah MAA, Zukki NIM (2009) Municipal solid waste management in Malaysia: practices and challenges. Waste Manag 29:2902–2906. doi: 10.1016/j.wasman.2008.07.015 CrossRefGoogle Scholar
  53. Marques F (2013) The operational proceeding evaluations of sanitary landfills of Rio de Janeiro State. Universidade do Estado do Rio de JaneiroGoogle Scholar
  54. Marshall RE, Farahbakhsh K (2013) Systems approaches to integrated solid waste management in developing countries. Waste Manag 33:988–1003. doi: 10.1016/j.wasman.2012.12.023 CrossRefGoogle Scholar
  55. Massarutto A (2007) Municipal waste management as a local utility: options for competition in an environmentally-regulated industry. Util Policy 15:9–19. doi: 10.1016/j.jup.2006.09.003 CrossRefGoogle Scholar
  56. Mønster J, Samuelsson J, Kjeldsen P, Scheutz C (2015) Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method. Waste Manag 35:177–186. doi: 10.1016/j.wasman.2014.09.006 CrossRefGoogle Scholar
  57. OECD (2015) Municipal wasteGoogle Scholar
  58. OECD (2007) Guidance manual for the implementation of the OECD recommendation C(2004)100 on environmentally sound management (ESM) of wasteGoogle Scholar
  59. Ogawa H (2000) Sustainable solid waste management in developing countries. In: Organization WH (ed) 7th ISWA international congress and exhibition. Kuala Lumpur, MalaysiaGoogle Scholar
  60. Oliveira LB, Rosa LP (2003) Brazilian waste potential: energy, environmental, social and economic benefits. Energy Policy 31:1481–1491. doi: 10.1016/S0301-4215(02)00204-5 CrossRefGoogle Scholar
  61. Pearce DW, Turner RK (1989) Economics of natural resources and the environment. Johns Hopkins UniversityGoogle Scholar
  62. Plochl C, Wetzer W, Ragossnig A (2008) Clean development mechanism: an incentive for waste management projects? Waste Manag Res 26:104–110. doi: 10.1177/0734242X07087947 CrossRefGoogle Scholar
  63. Polzin F, Migendt M, Täube FA, von Flotow P (2015) Public policy influence on renewable energy investments—a panel data study across OECD countries. Energy Policy 80:98–111. doi: 10.1016/j.enpol.2015.01.026 CrossRefGoogle Scholar
  64. Puig-Ventosa I (2008) Charging systems and PAYT experiences for waste management in Spain. Waste Manag 28:2767–2771. doi: 10.1016/j.wasman.2008.03.029 CrossRefGoogle Scholar
  65. Rashidi R (2014) A review of performance management system. Int J Acad Res 7:210–214Google Scholar
  66. Rogger C, Beaurain F, Schmidt TS (2011) Composting projects under the clean development mechanism: sustainable contribution to mitigate climate change. Waste Manag 31:138–146. doi: 10.1016/j.wasman.2010.09.007 CrossRefGoogle Scholar
  67. Roos K, Ru J, Zhou W (2012) An innovative and cost-effective solution for livestock waste management in China, Thailand and VietnamGoogle Scholar
  68. Siddiqui FZ, Zaidi S, Pandey S, Khan ME (2013) Review of past research and proposed action plan for landfill gas-to-energy applications in India. Waste Manag Res 31:3–22. doi: 10.1177/0734242X12467066
  69. Simões P, Marques RC (2012) Influence of regulation on the productivity of waste utilities. What can we learn with the Portuguese experience? Waste Manag 32:1266–1275. doi: 10.1016/j.wasman.2012.02.004 CrossRefGoogle Scholar
  70. Singh J, Laurenti R, Sinha R, Frostell B (2014) Progress and challenges to the global waste management system. Waste Manag Res 32:800–812. doi: 10.1177/0734242X14537868 CrossRefGoogle Scholar
  71. Tayyeba O, Olsson M, Brandt N (2011) The best MSW treatment option by considering greenhouse gas emissions reduction: a case study in Georgia. Waste Manag Res 29:823–833. doi: 10.1177/0734242X10396119 CrossRefGoogle Scholar
  72. UNEP (2015) Global waste management outlook (GWMO). United Nations Environment ProgrammeGoogle Scholar
  73. UNFCCC (2015) CDM project search. https://cdm.unfccc.int/Projects/projsearch.html. Accessed 18 Dec 2015
  74. USEPA (2014a) Municipal solid waste generation, recycling, and disposal in the United States Tables and Figures for 2012. 63Google Scholar
  75. USEPA (2014b) Municipal solid waste generation, recycling, and disposal in the United States: Facts and Figures for 2012. WashingtonGoogle Scholar
  76. USEPA (2015) Bioreactors, municipal solid waste. http://www3.epa.gov/epawaste/nonhaz/municipal/landfill/bioreactors.htm. Accessed 25 Dec 2015
  77. Wagner TP, Raymond T (2015) Landfill mining: case study of a successful metals recovery project. Waste Manag. doi: 10.1016/j.wasman.2015.06.034
  78. Wang X, Nagpure AS, Decarolis JF, Barlaz MA (2013) Using observed data to improve estimated methane collection from select U.S. landfills. Environ Sci Technol 47:3251–3257. doi: 10.1021/es304565m Google Scholar
  79. Wilson DC, Velis CA (2015) Waste management—still a global challenge in the 21st century: an evidence-based call for action. Waste Manag Res 33:1049–1051. doi: 10.1177/0734242X15616055 CrossRefGoogle Scholar
  80. World Bank (2008) Solid waste management holistic decision modelingGoogle Scholar
  81. World Bank (2011) Solid waste management in Bulgaria, Croatia, Poland, and Romania : a cross-country analysis of sector challenges towards EU harmonizationGoogle Scholar
  82. World Bank (2010b) Brazil low carbon case study : wasteGoogle Scholar
  83. World Bank (2010a) Establishing integrated solid waste management in the large cities of Pakistan Multan : comprehensive scope evaluation reportGoogle Scholar
  84. Yoon J-H, Sim K (2015) Why is South Korea’s renewable energy policy failing? a qualitative evaluation. Energy Policy 86:369–379. doi: 10.1016/j.enpol.2015.07.020 CrossRefGoogle Scholar
  85. Yue D, Xu Y, Mahar RB et al (2007) Laboratory-scale experiments applied to the design of a two-stage submerged combustion evaporation system. Waste Manag 27:704–710. doi: 10.1016/j.wasman.2006.04.017 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.Federal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations