Skip to main content

Characterization and Monitoring of Solid Waste Disposal Sites Using Geophysical Methods: Current Applications and Novel Trends

  • Chapter
  • First Online:
Modelling Trends in Solid and Hazardous Waste Management

Abstract

Landfilling remains the most attractive waste management method for solid waste. Although not the most efficient and environmental-friendly option, landfills offer a cost-efficient solution compared to other alternatives. For any landfill to be successful site selection, construction, operation, and post-closure monitoring is critical. Synergistic use of geophysical methods and traditional point sampling (e.g., borehole sampling) allows for high resolution characterization and monitoring of landfills during all stages of operation; from guided site selection, to construction integrity and waste characterization, to leachate recirculation and leak monitoring. Geophysical methods offer advantages, such as high temporal and spatial resolution, non (or minimally) invasive and cost-efficient operation, rendering them a very powerful tool for characterization, and long-term monitoring of waste disposal sites. Since geophysical methods involve the indirect imaging of the subsurface cautious implementation, including direct sampling, is needed for successful application. Multiple geophysical methods have been shown to be suitable for landfill characterization and monitoring. Electrical (resistivity, induced polarization, and self potential) and electromagnetic (transient electromagnetic methods, ground penetrating) are the common geophysical methods employed in waste management operations due to the increased conductivity of waste and leachate. Seismic methodologies can also be used to describe subsurface geology and possible waste horizons. In certain cases, magnetic measurements can also be used for the monitoring and characterization of landfills. Typically, geophysical methods are used to:

  • spatially delineate landfills and define landfill geometry,

  • monitor and characterize the spatial distribution of moisture, gas content, and leachate inside landfills,

  • identify classes of buried waste based on material composition,

  • monitor the integrity of the liner, and

  • identify and monitor leachate leaks, and the associated contamination plumes.

With this chapter we aim to introduce common geophysical methods and provide examples for application in landfills. For the geophysical methods of interest the basics principles, along with up to date references are provided, and the advantages and limitations for waste management operations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulrahman A, Nawawi M, Saad R, Abu-Rizaiza AS, Yusoff MS, Khalil AE, Ishola KS (2016) Characterization of active and closed landfill sites using 2D resistivity/IP imaging: case studies in Penang, Malaysia. Environ Earth Sci 75(4):347. doi:10.1007/s12665-015-5003-5

    Article  Google Scholar 

  • Almadani S, Ibrahim E, Abdelrahman K, Al-Bassam A, Al-Shmrani A (2015) Magnetic and seismic refraction survey for site investigation of an urban expansion site in Abha District, Southwest Saudi Arabia. Arab J Geosci 8(4):2299–2312. doi:10.1007/s12517-014-1342-x

    Article  CAS  Google Scholar 

  • Ammar AI, Kruse SE (2016) Resistivity soundings and VLF profiles for siting groundwater wells in a fractured basement aquifer in the Arabian Shield, Saudi Arabia. J African Earth Sci 116:56–67. doi:10.1016/j.jafrearsci.2015.12.020

    Article  Google Scholar 

  • Anbazhagan P, SivakumarBabu G, Lakshmikanthan P, VivekAnand K (2016) Seismic characterization and dynamic site response of a municipal solid waste landfill in Bangalore, India. Waste Manag Res 34(3):205–213. doi:10.1177/0734242X15622814

    Article  CAS  Google Scholar 

  • Annan AP (1992) Ground penetrating radar. Mississauga, ON, Canada

    Google Scholar 

  • Aristodemou E, Thomas-Betts A (2000) DC resistivity and induced polarisation investigations at a waste disposal site and its environments. J Appl Geophys 44(2–3):275–302. doi:10.1016/S0926-9851(99)00022-1

    Article  Google Scholar 

  • Arora T, Linde N, Revil A, Castermant J (2007) Non-intrusive characterization of the redox potential of landfill leachate plumes from self-potential data. J Contam Hydrol 92(3–4):274–292. doi:10.1016/j.jconhyd.2007.01.018

  • ASTM (2001) Standard guide for using the frequency domain electromagnetic method for subsurface investigations, ASTM D6639-01

    Google Scholar 

  • ASTM (2005) Standard guide for using the surface ground penetrating radar method for subsurface investigation ASTM D6432-99

    Google Scholar 

  • ASTM (2006) Standard guide for using the seismic refraction method for subsurface investigation. J Appl Geophys 44(2–3):167–180. doi:10.1016/S0926-9851(98)00033-0

    Google Scholar 

  • Atekwana EA, Sauck W, Werkema WA Jr (2000) Investigations of geoelectrical signatures at a hydrocarbon contaminated site. J Appl Geophys 44(2–3):167–180. doi:10.1016/S0926-9851(98)00033-0

    Article  Google Scholar 

  • Atekwana EA, Mewafy FM, Abdel Aal G, Werkema DD, Revil A, Slater LD (2014) High- resolution magnetic susceptibility measurements for investigating magnetic mineral formation during microbial mediated iron reduction. J Geophys Res Biogeosci 119(1):80–94. doi:10.1002/2013JG002414

    Article  CAS  Google Scholar 

  • Augello A, Bray J, Abrahamson N, Seed R (1998) Dynamic properties of solid waste based on back-analysis of OII landfill. ASCE J Geotech Geoenviron Eng 124(3):211–222

    Article  Google Scholar 

  • Baker H, Gabr A, Djeddi M (2015) Geophysical and geotechnical techniques: complementary tools in studying subsurface features. In: International conference on engineering geophysics, Al Ain, United Arab Emirates, 15–18 Nov 2015, Society of Exploration Geophysicists, pp 2–5

    Google Scholar 

  • Barlaz MA, Reinhart D (2004) Bioreactor landfills: progress continues. Waste Manag 24(9):859–860. doi:10.1016/j.wasman.2004.09.001

    Article  Google Scholar 

  • Belghazal H, Piga C, Loddo F, El Messari JS, Touhami AO (2013) Geophysical surveys for the characterization of landfills. Int J Innov Appl Stud 4(2):254–263

    Google Scholar 

  • Belmonte-jiménez SI, Bortolotti-villalobos A, Campos-enríquez JÓ, Pérez-flores MA, Delgado- rodríguez O, Ensenada-tijuana C, Playitas Z, California B, México CP (2014) Electromagnetic methods application for characterizing a site. Rev Int Contam Ambie 30(3):317–329

    Google Scholar 

  • Benson RC, Yuhr LB (2016) Engineering measurements and monitoring. Site characterization in karst and pseudokarst terraines. Springer, Netherlands, Dordrecht, pp 265–273

    Chapter  Google Scholar 

  • Benson RR, Glaccum A, Noel M (1988) Geophysical techniques for sensing buried wastes and waste migration. National Water Well Association, Dublin

    Google Scholar 

  • Bevc D, Morrison H (1991) Borehole-to-surface electrical resistivity monitoring of a salt water injection experiment. Geophysics 56(6):769–777

    Article  Google Scholar 

  • Bijaksana S, Huliselan E, Safiuddin LO, Fitriani D, Tamuntuan G, Agustine E (2013) Rock magnetic methods in soil and environmental studies: fundamentals and case studies. Procedia Earth Planet Sci 6:8–13. doi:10.1016/j.proeps.2013.01.001

    Article  Google Scholar 

  • Binley A, Daily W, Ramirez A (1997) Detecting leaks from environmental barriers using electrical current imaging. J Environ Eng Geophys 2(1):11–19. doi:10.4133/JEEG2.1.11

    Article  Google Scholar 

  • Binley A, Winship P, West LJJ, Pokar M, Middleton R (2002a) Seasonal variation of moisture content in unsaturated sandstone inferred from borehole radar and resistivity profiles. J Hydrol 267(3–4):160–172. doi:10.1016/S0022-1694(02)00147-6

    Article  Google Scholar 

  • Binley A, Cassiani G, Middleton R, Winship P (2002b) Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging. J Hydrol 267(3–4):147–159. doi:10.1016/S0022-1694(02)00146-4

    Article  Google Scholar 

  • Bisdorf RJ, Lucius JE (1999) Mapping the Norman, Oklahoma landfill contamination plume using electrical geophysics. In: Morganwalp HT, Buxton DW (eds) US geological survey toxic substances hydrology program proceedings of the technical meeting, US Geological Survey Water-Resources Investigations Report 99-4018-C, Charleston, South Carolina, pp 579–584

    Google Scholar 

  • Blum R (1998) Geoelectrical mapping and groundwater contamination. In: Merkler GP (ed) Detection of subsurface flow phenomena. Springer, Berlin, pp 253–260

    Google Scholar 

  • Boyce JI, Eyles N, Pugin A (1995) Seismic reflection, borehole and outcrop geometry of late wisconsin tills at a proposed landfill near Toronto, Ontario. Can J Earth Sci 32(9):1331–1349. doi:10.1139/e95-108

    Article  Google Scholar 

  • Briggs MA, Campbell S, Nolan J, Walvoord MA, Ntarlagiannis D, Day-Lewis FD, Lane JW (2016) Surface geophysical methods for characterizing the active layer and shallow permafrost features. Permafr Periglac Process doi:10.1002/ppp.1893

  • Buselli G, Lu K (2001) Groundwater contamination monitoring with multichannel electrical and electromagnetic methods. J Appl Geophys 48(1):11–23. doi:10.1016/S0926-9851(01)00055-6

    Article  Google Scholar 

  • Calkin S (1989) A shallow seismic refraction survey of the Mallard North Landfill—Hanover Park. Northern Illinois Univ, IL, US

    Google Scholar 

  • Cardarelli E, Bernabini M (1997) Two case studies of the determination of parameters of urban waste dumps. J Appl Geophys 36(4):167–174. doi:10.1016/S0926-9851(96)00056-0

    Article  Google Scholar 

  • De Carlo L et al (2013) Characterization of a dismissed land fi ll via electrical resistivity tomography and mise-à-la-masse method. J Appl Geophys 98:1–10. doi:10.1016/j.jappgeo.2013.07.010

    Article  Google Scholar 

  • Carpenter PJ, Calkin SF, Kaufmann RS (1991) Assessing a fractured landfill cover using electrical resistivity and seismic refraction techniques. Geophysics 56(11):1896–1904. doi:10.1190/1.1443001

    Article  Google Scholar 

  • Cassiani G, Bruno V, Villa A, Fusi N, Binley A (2006) A saline trace test monitored via time- lapse surface electrical resistivity tomography. J Appl Geophys 59(3):244–259. doi:10.1016/j.jappgeo.2005.10.007

    Article  Google Scholar 

  • Chambers JE, Kuras O, Meldrum PI, Ogilvy RD, Hollands J (2006) Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics 71(6):B231–B239. doi:10.1190/1.2360184

    Article  Google Scholar 

  • Chira Oliva P, Barbalho Pires D, Ribeiro Cruz J (2015) Environmental study of the Bragança City landfill (Brazil) applying ground penetrating radar. EAGE, 21st European Meeting of Environmental and Engineering Geophysics. doi: 10.3997/2214-4609.201413820

  • Chongo M, Christiansen AV, Fiandaca G, Nyambe IA, Larsen F, Bauer-Gottwein P (2015) Mapping localised freshwater anomalies in the brackish paleo-lake sediments of the Machile-Zambezi Basin with transient electromagnetic sounding, geoelectrical imaging and induced polarisation. J Appl Geophys 123:81–92. doi:10.1016/j.jappgeo.2015.10.002

    Article  Google Scholar 

  • Çınar H, Altundaş S, Ersoy E, Bak K, Bayrak N (2016) Application of two geophysical methods to characterize a former waste disposal site of the Trabzon-Moloz district in Turkey. Environ Earth Sci 75(1):52. doi:10.1007/s12665-015-4839-z

    Article  CAS  Google Scholar 

  • Clément R, Descloitres M, Günther T, Oxarango L, Morra C, Laurent J-P, Gourc J-P (2010) Improvement of electrical resistivity tomography for leachate injection monitoring. Waste Manag 30(3):452–464. doi:10.1016/j.wasman.2009.10.002

    Article  CAS  Google Scholar 

  • Daily W, Ramirez A, LaBrecque D, Nitao J (1992) Electrical resistivity tomography of vadose water movement. Water Resour Res 28(5):1429–1442. doi:10.1029/91WR03087

    Article  Google Scholar 

  • Dantas RRS, Medeiros WE (2016) Resolution in crosswell travel time tomography: the dependence on illumination. Geophysics 81(1):W1–W12. doi:10.1190/geo2015-0119.1

    Article  Google Scholar 

  • Davis JL, Annan AP (1989) Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy 1. Geophys Prospect 37(5):531–551. doi:10.1111/j.1365-2478.1989.tb02221.x

    Article  Google Scholar 

  • Dawson C, Lane J Jr (2002) Integrated geophysical characterization of the Winthrop landfill southern flow path, Winthrop, Maine. … Appl Geophys … 1–22

    Google Scholar 

  • Delgado J, López Casado C, Estévez A, Giner J, Cuenca A, Molina S (2000a) Mapping soft soils in the Segura river valley (SE Spain): a case study of microtremors as an exploration tool. J Appl Geophys 45(1):19–32. doi:10.1016/S0926-9851(00)00016-1

    Article  Google Scholar 

  • Delgado J, López Casado C, Giner J, Estévez A, Cuenca A, Molina S (2000b) Microtremors as a geophysical exploration tool: applications and limitations. Pure Appl Geophys 157(9):1445–1462. doi:10.1007/PL00001128

    Article  Google Scholar 

  • Delgado J, Alfaro P, Galindo-Zaldivar J, Jabaloy A, López Garrido CA, Sanz de Galdeano C (2002) Structure of the Padul-Nigüelas Basin (S Spain) from H/v ratios of ambient noise: application of the method to study peat and coarse sediments. Pure Appl Geophys 159(11–12)–2749. doi:10.1007/s00024-002-8756-1

  • Doll WE (1998) Reprocessing of shallow seismic reflection data to image faults near a hazardous waste site on the Oak Ridge Reservation, Tennessee. In: Symposium application geophysics environmental engineering problems (SAGEEP), proceedings. Environmental and Engineering Geophysical Society, Denver, CO, pp 705–714

    Google Scholar 

  • Doll WE, Miller RD, Xia J (1996) Enhancement of swept source near-surface seismic reflection data at a hazardous waste site. In: 66th Annual international meeting society of exploration geophysicists expanded abstracts, Society of Exploration Geophysics, Tulsa, OK, pp 877–879

    Google Scholar 

  • Fawcett JD (1989) Hydrogeologic assessment, design and remediation of a shallow groundwater contaminated zone. In: Proceedings of the 3rd national outdoor action conference on aquifer restoration, ground water monitoring and geophysical methods, National Water Well Association, Orlando, pp 591–605

    Google Scholar 

  • French HK, Hardbattle C, Binley A, Winship P, Jakobsen L (2002) Monitoring snowmelt induced unsaturated flow and transport using electrical resistivity tomography. J Hydrol 267(3–4):273–284. doi:10.1016/S0022-1694(02)00156-7

    Article  CAS  Google Scholar 

  • Gazoty A, Fiandaca G, Pedersen J, Auken E, Christiansen AV, Pedersen JK (2012) Application of time domain induced polarization to the mapping of lithotypes in a landfill site. Hydrol Earth Syst Sci 16(6):1793–1804. doi:10.5194/hess-16-1793-2012

  • Genelle F, Sirieix C, Riss J, Naudet V, Dabas M, Bégassat P (2014) Detection of landfill cover damage using geophysical methods. Near Surf Geophys 12(2036):599–611. doi:10.3997/1873-0604.2014018

    Google Scholar 

  • Gouveia F, Lopes I, Gomes RC (2016) Deeper VS profile from joint analysis of Rayleigh wave data. Eng Geol 202:85–98. doi:10.1016/j.enggeo.2016.01.006

    Article  Google Scholar 

  • Granda A, Cambero JC (1998) The use of geophysical techniques for the detection and characterization of landfill in areas of urban development. In: 4th annual meeting environmental engineering geophysics society, european section, proceedings, Environmental and Engineering Geophysical Society, Lausanne, Switzerland, pp 111–114

    Google Scholar 

  • Green A, Lanz E, Maurer H (1999) A template for geophysical investigations of small landfills. Lead Edge 18(2):248–254

    Article  Google Scholar 

  • Greenhouse J, Harris R (1983) Migration of contaminants in groundwater at a landfill: a case study. J Hydrol 63(1–2):177–197. doi:10.1016/0022-1694(83)90227-5

    Article  Google Scholar 

  • Greenhouse JP, Monier-Williams M (1985) Geophysical Monitoring of ground water contamination around waste disposal sites. Ground Water Monit Remediat 5(4):63–69. doi:10.1111/j.1745-6592.1985.tb00940.x

    Article  CAS  Google Scholar 

  • Greenwood W, Zekkos D, Sahadewa A (2015) Spatial variation of shear wave velocity of waste materials from surface wave measurements. J Environ Eng Geophys 20(4):287–301. doi:10.2113/JEEG20.4.287

    Article  Google Scholar 

  • Grellier S, Guerin R, Robain H, Bobachev A, Vermeersch F, Tabbagh A (2008) Monitoring of leachate recirculation in a bioreactor landfill by 2-D electrical resistivity imaging. J Environ Eng Geophys 13(4):351–359. doi:10.2113/JEEG13.4.351

    Article  Google Scholar 

  • Guérin R, Munoz ML, Aran C, Laperrelle C, Hidra M, Drouart E, Grellier S (2004) Leachate recirculation: moisture content assessment by means of a geophysical technique. Waste Manag 24(8):785–794. doi:10.1016/j.wasman.2004.03.010

    Article  CAS  Google Scholar 

  • Günther T, Martin T (2016) Spectral two-dimensional inversion of frequency-domain induced polarization data from a mining slag heap. J Appl Geophys 1–13. doi:10.1016/j.jappgeo.2016.01.008

  • Hall DW, Pasicznyk DL (1987) Application of seismic refraction and terrain conductivity methods at a ground water pollution site in North-Central New Jersey. In: Graves B, Lehr JH, Butcher K, Alcorn P, Ammerman L, Williams P, Renz M, Shelton V (eds) 1st national outdoor action conference on aquifer restoration, groundwater monitoring and geophysical methods. National Water Well Association, Las Vegas, Nevada, pp 505–524

    Google Scholar 

  • Hämmann M, Maurer HR, Green AG, Horstmeyer H (1997) Self-Potential Image Reconstruction: Capabilities and Limitations. J Environ Eng Geophys 2(1):21–35. doi:10.4133/JEEG2.1.21

    Article  Google Scholar 

  • Heenan J, Slater LD, Ntarlagiannis D, Atekwana EA, Fathepure BZ, Dalvi S, Ross C, Werkema DD, Atekwana EA (2015) Electrical resistivity imaging for long-term autonomous monitoring of hydrocarbon degradation: lessons from the deepwater horizon oil spill. Geophysics 80(1):B1–B11. doi:10.1190/geo2013-0468.1

    Article  Google Scholar 

  • Hix K (1998) Leak detection for landfill liners: overview of tools for vadoze zone monitoring. Technical status report EPA-542-R-98-019, US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Huliselan EK, Bijaksana S, Srigutomo W, Kardena E (2010) Scanning electron microscopy and magnetic characterization of iron oxides in solid waste landfill leachate. J Hazard Mater 179(1–3):701–708. doi:10.1016/j.jhazmat.2010.03.058

    Article  CAS  Google Scholar 

  • Hutchinson PJ (1995) The geology of landfills. Environl Geosci 2(1):2–14

    Google Scholar 

  • Hutchinson PJ, Barta LS (2000) Geophysical applications to solid waste analysis. In: Zandi I WS, Mersky RL (eds) The 16th international conference on solid waste technology and management, Philadelphia, PA, USA, pp 2–78

    Google Scholar 

  • De Iaco R, Green A, Maurer H-R, Horstmeyer H (2003) A combined seismic reflection and refraction study of a landfill and its host sediments. J Appl Geophys 52(4):139–156. doi:10.1016/S0926-9851(02)00255-0

    Article  Google Scholar 

  • Iwalewa TM, Makkawi MH (2015) Site characterization and risk assessment in support of the design of groundwater remediation well near a hazardous landfill. Arab J Geosci 8(3):1705–1715. doi:10.1007/s12517-014-1300-7

    Article  CAS  Google Scholar 

  • Jobin P, Mercier G, Blais J-F (2016) Magnetic and density characteristics of a heavily polluted soil with municipal solid waste incinerator residues: significance for remediation strategies. Int J Miner Process 149:119–126. doi:10.1016/j.minpro.2016.02.010

    Article  CAS  Google Scholar 

  • Jodeiri Shokri B, Doulati Ardejani F, Moradzadeh A (2016) Mapping the flow pathways and contaminants transportation around a coal washing plant using the VLF-EM, Geo-electrical and IP techniques—a case study, NE Iran. Environ Earth Sci 75(1):62. doi:10.1007/s12665-015-4776-x

    Article  Google Scholar 

  • Johnson TC, Wellman D (2015) Accurate modelling and inversion of electrical resistivity data in the presence of metallic infrastructure with known location and dimension. Geophys J Int 202(2):1096–1108. doi:10.1093/gji/ggv206

    Article  Google Scholar 

  • Karagoz O, Chimoto K, Citak S, Ozel O, Yamanaka H, Hatayama K (2015) Estimation of shallow S-wave velocity structure and site response characteristics by microtremor array measurements in Tekirdag region. NW Turkey, Earth, Planets Sp 67(1):176. doi:10.1186/s40623-015-0320-1

    Article  Google Scholar 

  • Kavazanjian EJ, Matasovic N (1995) Seismic analysis of solid waste landfills. The geoenvironment 2000 specialty conference. ASCE, New Orleans, Louisiana, pp 24–26

    Google Scholar 

  • Kavazanjian EJ, Matasovic N, Stokoe K, Bray JD (1996) In situ shear wave velocity of solid waste from surface wave measurements. In: 2nd international congress environmental geotechnics, Balkema, Osaka, Japan, pp 97–104

    Google Scholar 

  • Kemna A, Binley A, Ramirez A, Daily W (2000) Complex resistivity tomography for environmental applications. Chem Eng J 77(1–2):11–18

    Article  CAS  Google Scholar 

  • Kemna A, Binley A, Slater L (2004) Crosshole IP imaging for engineering and environmental applications. Geophysics 69(1):97–107. doi:10.1190/1.1649379

    Article  Google Scholar 

  • Kemna A et al (2012) An overview of the spectral induced polarization method for near-surface applications. Near Surf Geophys 453–468. doi:10.3997/1873-0604.2012027

  • Kim J-E, Ha D-W, Kim Y-H (2015) Separation of steel slag from landfill waste for the purpose of decontamination using a superconducting magnetic separation system. IEEE Trans Appl Supercond 25(3):1–4. doi:10.1109/TASC.2014.2365954

    Google Scholar 

  • Klefstad G, Sendlein LVA, Palmquist RC (1977) Limitations of the electrical resistivity method in landfill investigations. Ground Water 15(5):418–427. doi:10.1111/j.1745-6584.1977.tb03185.x

    Article  Google Scholar 

  • Knight MJ, Leonard JG, Whiteley RJ (1978) Lucas heights solid waste landfill and downstream leachate transport—a case study in environmental geology. Bull Int Assoc Eng Geol 18(1):45–64. doi:10.1007/BF02635349

    Article  CAS  Google Scholar 

  • Konstantaki LA (2016) Imaging and characterization of heterogeneous landfills using geophysical methods. PhD Thesis, Delft University of Technology

    Google Scholar 

  • Konstantaki LA, Draganov D, Ghose R, Heimovaara T (2015) Seismic interferometry as a tool for improved imaging of the heterogeneities in the body of a landfill. J Appl Geophys 122:28–39. doi:10.1016/j.jappgeo.2015.08.008

    Article  Google Scholar 

  • Kourgialas NN, Dokou Z, Karatzas GP, Panagopoulos G, Soupios P, Vafidis A, Manoutsoglou E, Schafmeister M (2016) Saltwater intrusion in an irrigated agricultural area: combining density-dependent modeling and geophysical methods. Environ Earth Sci 75(1):15. doi:10.1007/s12665-015-4856-y

    Article  CAS  Google Scholar 

  • Lanz E, Maurer H, Green AG (1998) Refraction tomography over a buried waste disposal site. Geophysics 63(4):1414–1433. doi:10.1190/1.1444443

    Article  Google Scholar 

  • Linde N, Doetsch J, Jougnot D, Genoni O, Dürst Y, Minsley BJ, Vogt T, Pasquale N, Luster J (2011) Self-potential investigations of a gravel bar in a restored river corridor. Hydrol Earth Syst Sci 15(3):729–742. doi:10.5194/hess-15-729-2011

    Article  Google Scholar 

  • Mack TJ, Maus PE (1986) Detection of contaminant plumes in ground water of Long Island, New York. USGS, Water Resources Investigations Report, 86–4045

    Google Scholar 

  • Maineult A, Bernabé Y, Ackerer P (2006) Detection of advected, reacting redox fronts from self- potential measurements. J Contam Hydrol 86(1–2):32–52. doi:10.1016/j.jconhyd.2006.02.007

    Article  CAS  Google Scholar 

  • Malte Ibs-von S, Wohlenberg J (1999) Microtremor measurements used to map thickness of soft sediments. Bull Seism Soc Am 89(1):250–259

    Google Scholar 

  • Matasovic N, Kavazanjian EJ (1998) Cyclic Characterization of OII Landfill Solid Waste. J Geotech Geoenviron Eng 124(3):197–210. doi:10.1061/1090-0241

    Article  Google Scholar 

  • McQuown M, Becker S, Miller P, BSR, MPT, McQuown MS (1991) Subsurface characterization of a landfill using integrated geophysical techniques. In: 5th national outdoor action conference on aquifer restoration, ground water monitoring and geophysical methods, Water Well Journal Publishing, Las Vegas, NV, pp 933–946

    Google Scholar 

  • Meju M (2000a) Environmental geophysics: the tasks ahead. J Appl Geophys 44(2–3):63–65. doi:10.1016/S0926-9851(00)00006-9

    Article  Google Scholar 

  • Meju MA (2000b) Geoelectrical investigation of old/abandoned, covered landfill sites in urban areas: model development with a genetic diagnosis approach. J Appl Geophys 44(2–3):115–150. doi:10.1016/S0926-9851(00)00011-2

    Article  Google Scholar 

  • Minsley BJ, Smith BD, Hammack R, Sams JI, Veloski G (2012) Calibration and filtering strategies for frequency domain electromagnetic data. J Appl Geophys 80:56–66. doi:10.1016/j.jappgeo.2012.01.008

    Article  Google Scholar 

  • Monteiro Santos FA, Mateus A, Figueiras J, Gonzalves MA (2006) Mapping groundwater contamination around a landfill facility using the VLF-EM method—a case study. J Appl Geophys 60(2):115–125. doi:10.1016/j.jappgeo.2006.01.002

    Article  Google Scholar 

  • Murray C, Keiswetter D, Rostosky E (1999) Seismic refraction case studies at environmental sites. In: symp applic geophys environ engin prob (SAGEEP), proceedings. Environmental and Engineering Geophysical Society, Environmental and Engineering Geophysical Society, Denver, CO, pp 235–244

    Google Scholar 

  • Mwakanyamale K, Slater L, Binley A, Ntarlagiannis D (2012) Lithologic imaging using complex conductivity: lessons learned from the Hanford 300 Area. Geophysics 77(6):E397–E409. doi:10.1190/geo2011-0407.1

    Article  Google Scholar 

  • Naudet V (2003a) Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater. Geophys Res Lett 30(21):2091. doi:10.1029/2003GL018096

    Article  CAS  Google Scholar 

  • Naudet V (2003b) Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater. Geophys Res Lett 30(21):1–4. doi:10.1029/2003GL018096

    Article  CAS  Google Scholar 

  • Newman GA, Recher S, Tezkan B, Neubauer FM (2003) 3D inversion of a scalar radio magnetotelluric field data set. Geophysics 68(3):791–802. doi:10.1190/1.1581032

    Article  Google Scholar 

  • Nimmer RE (2002) Direct current and self-potential monitoring of an evolving plume in partially saturated fractured rock. J Hydrol 267(3–4):258–272. doi:10.1016/S0022-1694(02)00155-5

    Article  Google Scholar 

  • Nobes DC (1996) Troubled waters: environmental applications of electrical and electromagnetic methods. Surv Geophys 17(4):393–454. doi:10.1007/BF01901640

    Article  Google Scholar 

  • Ntarlagiannis D, Robinson J, Soupios P, Slater L (2016) Field-scale electrical geophysics over an olive oil mill waste deposition site: evaluating the information content of resistivity versus induced polarization (IP) images for delineating the spatial extent of organic contamination. J Appl Geophys 62:1–9. doi:10.1016/j.jappgeo.2016.01.017

    Google Scholar 

  • Nyquist JE, Corry CE (2002) Self-potential: the ugly duckling of environmental geophysics. Lead Edge 21(5):446–451. doi:10.1190/1.1481251

    Article  Google Scholar 

  • Olhoeft GR, King TVV (1991) Mapping subsurface organic compounds noninvasively by their reactions with clays. In: The 4th toxic substances technical meeting, Monterey, CA, pp 1–18

    Google Scholar 

  • Orlando L, Marchesi E (2001) Georadar as a tool to identify and characterize solid waste dump deposits. J Appl Geophys 48:163–174

    Article  Google Scholar 

  • Parolai S (2002) New Relationships between Vs, Thickness of Sediments, and Resonance Frequency Calculated by the H/V Ratio of Seismic Noise for the Cologne Area (Germany). Bull Seismol Soc Am 92(6):2521–2527. doi:10.1785/0120010248

    Article  Google Scholar 

  • Parolai S, Bormann P, Milkereit C (2001) Assessment of the natural frequency of the sedimentary cover in the cologne area (Germany) using noise measurements. J Earthq Eng 5(4):541–564. doi:10.1080/13632460109350405

    Article  Google Scholar 

  • Pasasa L, Wenzel F, Zhao P (1998) Prestack Kirchhoff depth migration of shallow seismic data. Geophysics 63(4):1241–1247. doi:10.1190/1.1444425

    Article  Google Scholar 

  • Pellerin L (2002) Applications of electrical and electromagnetic methods for environmental and geotechnical investigations. Surv Geophys 23(2/3):101–132. doi:10.1023/A:1015044200567

    Article  Google Scholar 

  • Petiau G (2000) Second generation of lead-lead chloride electrodes for geophysical applications. Pure Appl Geophys 157(3):357–382. doi:10.1007/s000240050004

    Article  Google Scholar 

  • Piratoba Morales G, Fenzi N (2000) Environmental impact of the deposit of solid waste of the “Aura” Bele´ m-PA (Brazil). In: 31st international geological congress, Rio de Janeiro, Brazil, p 4218

    Google Scholar 

  • Placencia-Gómez E, Parviainen A, Hokkanen T, Loukola-Ruskeeniemi K (2010) Integrated geophysical and geochemical study on AMD generation at the Haveri Au–Cu mine tailings, SW Finland. Environ Earth Sci 61(7):1435–1447. doi:10.1007/s12665-010-0459-9

    Article  CAS  Google Scholar 

  • Placencia-Gómez E, Parviainen A, Slater L, Leveinen J (2014) Spectral induced polarization (SIP) response of mine tailings. J Contam Hydrol 173C:8–24. doi:10.1016/j.jconhyd.2014.12.002

    Google Scholar 

  • Porsani JL, Filho WM, Elis VR, Shimeles F, Dourado JC, Moura HP (2004) The use of GPR and VES in delineating a contamination plume in a landfill site: a case study in SE Brazil. J Appl Geophys 55(3–4):199–209. doi:10.1016/j.jappgeo.2003.11.001

    Article  Google Scholar 

  • Prezzi C, Orgeira MJ, Ostera H, Vásquez CA (2005) Ground magnetic survey of a municipal solid waste landfill: pilot study in Argentina. Environ Geol 47(7):889–897. doi:10.1007/s00254-004-1198-6

    Article  Google Scholar 

  • Pujari PR, Pardhi P, Muduli P, Harkare P, Nanoti MV (2007) Assessment of pollution near landfill site in Nagpur, India by resistivity imaging and GPR. Environ Monit Assess 131(1–3):489–500. doi:10.1007/s10661-006-9494-0

    Article  CAS  Google Scholar 

  • Ramaiah BJ, Ramana GV, Kavazanjian E, Matasovic N, Bansal BK (2016) Empirical model for shear wave velocity of municipal solid waste in situ. J Geotech Geoenviron Eng 142(1):06015012. doi:10.1061/(ASCE)GT.1943-5606.0001389

    Article  Google Scholar 

  • Revil a (2003) Principles of electrography applied to self-potential electrokinetic sources and hydrogeological applications. Water Resour Res 39(5):1–15. doi:10.1029/2001WR000916

    Article  Google Scholar 

  • Revil A, Karaoulis M, Johnson T, Kemna A (2012a) Review: some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeol J 617–658. doi:10.1007/s10040-011-0819-x

  • Revil A, Naudet V, Nouzaret J, Pessel M (2003) Principles of electrography applied to self-potential electrokinetic sources and hydrogeological applications, Water Resour Res 39(5). doi:10.1029/2001WR000916

  • Revil A, Mendonça CA, Atekwana EA, Kulessa B, Hubbard SS, Bohlen KJ (2010) Understanding biogeobatteries: where geophysics meets microbiology. J Geophys Res 115:G00G02. doi:10.1029/2009JG001065

  • Revil A, Karaoulis M, Johnson T, Kemna A (2012b) Review: some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeol J 617–658. doi:10.1007/s10040-011-0819-x

  • Reynolds J (2011) An introduction to applied and environmental geophysics, 2nd edn. Wiley, ISBN: 978-0-471-48535-3, p 710

    Google Scholar 

  • Robertsson JOA, HK, GAG (1996) Source-generated noise in shallow seismic data. Eur J Environ Engin Geophys 1, 107–124

    Google Scholar 

  • Robinson H, Gronow J (1995) A review of landfill leachate composition in the UK. In: Institute of waste management proceedings, IWM, Northampton, pp 3–8

    Google Scholar 

  • Robinson J, Johnson T, Slater L (2015) Challenges and opportunities for fractured rock imaging using 3D cross-borehole electrical resistivity. Geophysics 80(2):E49–E61. doi:10.1190/geo2014-0138.1

    Article  Google Scholar 

  • Robinson J et al (2015b) Imaging pathways in fractured rock using three-dimensional electrical resistivity tomography. Groundwater. doi:10.1111/gwat.12356

  • Rodriguez EB (1987) Application of gravity and seismic methods in hydrogeological mapping at a landfill site in Ontario. In: 1st national outdoor action conference on aquifer restoration, ground water monitoring and geophysical methods, Assoc. of Groundwater Sci. and Eng.—National Water Well Association, Dublin, OH, pp 487–504

    Google Scholar 

  • Rosqvist H, Destouni G (2000) Solute transport through preferential pathways in municipal solid waste. J Contam Hydrol 46(1–2):39–60. doi:10.1016/S0169-7722(00)00127-3

    Article  CAS  Google Scholar 

  • Rosqvist H, Dahlin T, Lindhe C (2005) Investigation of water flow in a bioreactor landfill using geoelectrical imaging techniques. In: Tenth international waste management and landfill symposium, Proceedings Sardinia 2005, S. Margherita di Pula, Cagliari, Italy

    Google Scholar 

  • Roth M, Holliger K, Green AG (1998) Guided waves in near-surface seismic surveys. Geophys Res Lett 98:235–248

    Google Scholar 

  • Rozycki A, Fonticiella JMR, Cuadra A (2006) Detection and evaluation of horizontal fractures in earth dams using the self-potential method 82:145–153. doi:10.1016/j.enggeo.2005.09.013

    Google Scholar 

  • Rubin Y, Hubbard SS (eds) (2005) Hydrogeophysics. Water Science and Technology Library, Springer, Netherlands, Dordrecht

    Google Scholar 

  • Russell GM (1990) Application of geophysical techniques for assessing groundwater contamination near a landfill at Stuart, Florida. In: The FOCUS conference on eastern regional ground water issues, NWWA, Springfield, Mass, pp 211–225

    Google Scholar 

  • Sahadewa A, Zekkos D, Woods RD, Stokoe KH (2015) Field testing method for evaluating the small-strain shear modulus and shear modulus nonlinearity of solid waste. Geotech Test J 38(4):20140016. doi:10.1520/GTJ20140016

    Article  Google Scholar 

  • Sato M, Mooney HM (1960) The electrochemical mechanism of sulfide self-potentials. Geophysics 25(1):226–249. doi:10.1190/1.1438689

    Article  CAS  Google Scholar 

  • Sauck WA (2000) A model for the resistivity structure of LNAPL plumes and their environs in sandy sediments. J Appl Geophys 44(2–3):151–165. doi:10.1016/S0926-9851(99)00021-X

    Article  Google Scholar 

  • Sauck WA, Atekwana EA, Nash MS (1998) High conductivities associated with an LNAPL plume imaged by integrated geophysical techniques. J Environ Eng Geophys 2(3):203–212

    Google Scholar 

  • Scaife JE, Annan AP (1991) Ground penetrating radar: a powerful, high resolution tool for mining engineering and environmental problems. Sensors and Software. Internal Report, IR-59, p 24.

    Google Scholar 

  • Sharma HD, Dukes MT, Olsen DM (1990) Field measurements of dynamic moduli and Poisson’s ratios of refuse and underlying soils at a landfill site. In: Landva GD, Knowles A (eds) Geotechnics of waste fills—theory and practice, ASTM STP 1070. American Society for Testing and Materials, Philadelphia, PA, USA, pp 57–70

    Google Scholar 

  • Shemang EM, Mickus K, Same MP (2011) Geophysical characterization of the abandoned Gaborone Landfill, Botswana: implications for abandoned landfills in arid environments. Int J Environ Protect 1(1):1–12

    Google Scholar 

  • Slaine DD, Pehme PE, Hunter JA, Pullan SE, Greenhouse JP (1990) Mapping overburden stratigraphy at a proposed hazardous waste facility using shallow seismic reflection methods. In: Ward SH (ed) Geotechnical and environmental geophysics. Environmental and groundwater, vol II. Society of Exploration Geophysics, Tulsa, OK, pp 273–280

    Google Scholar 

  • Slater L (2007) Near surface electrical characterization of hydraulic conductivity: from petrophysical properties to aquifer geometries—a review. Surv Geophys 28(2–3):169–197. doi:10.1007/s10712-007-9022-y

    Article  Google Scholar 

  • Slater L, Binley A, Daily W, Johnson R (2000) Cross-hole electrical imaging of a controlled saline tracer injection. J Appl Geophys 44(2–3):85–102. doi:10.1016/S0926-9851(00)00002-1

    Article  Google Scholar 

  • Slater LD, Zaidman MD, Binley A, West LJ (1997) Electrical imaging of saline tracer migration for the investigation of unsaturated zone transport mechanisms. Hydrol Earth Syst Sci 1:291–302

    Article  Google Scholar 

  • Soupios P, Vallianatos F, Makris J, Papadopoulos I (2005) Determination of a landfill structure using HVSR, geoelectrical and seismic tomographies. In: International workshop in geoenvironment and geotechnics, Milos Island, Greece, pp 83–90

    Google Scholar 

  • Soupios P, Papadopoulos N, Papadopoulos I, Kouli M, Vallianatos F, Sarris A, Manios T (2007a) Application of integrated methods in mapping waste disposal areas. Environ Geol 53(3):661–675. doi:10.1007/s00254-007-0681-2

    Article  Google Scholar 

  • Soupios P, Papadopoulos I, Kouli M, Georgaki I, Vallianatos F, Kokinou E (2007b) Investigation of waste disposal areas using electrical methods: a case study from Chania, Crete, Greece. Environ Geol 51(7):1249–1261. doi:10.1007/s00254-006-0418-7

    Article  CAS  Google Scholar 

  • Soupios P, Piscitelli S, Vallianatos F, Lapenna V (2008) Contamination delineation and characterization of waste disposal sites performing integrated and innovative geophysical methods. In: Waste management research trends, vol 11, pp 221–259

    Google Scholar 

  • Soupios P, Kourgialas N, Dokou Z, Karatzas G, Panagopoulos G, Vafidis A, Manoutsoglou E (2015) Modeling saltwater intrusion at an agricultural coastal area using geophysical methods and the FEFLOW model. Engineering geology for society and territory, vol 3. Springer International Publishing, Cham, pp 249–252

    Google Scholar 

  • Splajt T, Ferrier G, Frostick LE (2003) Application of ground penetrating radar in mapping and monitoring landfill sites. Environ Geol 44(8):963–967. doi:10.1007/s00254-003-0839-5

    Article  Google Scholar 

  • Stanton GP, TP Schrader (2001) Surface geophysical investigation of a chemical waste landfill in northwestern Arkansas. In: U.S. geological survey karst interest group proceedings. Water-Resources Investigations Report 01-4011, pp 107–115

    Google Scholar 

  • Statom RA, Thyne GD, McCray JE (2004) Temporal changes in leachate chemistry of a municipal solid waste landfill cell in Florida, USA. Environ Geol 45(7):982–991. doi:10.1007/s00254-003-0957-0

    Article  CAS  Google Scholar 

  • Stenson RW (1988) Electromagnetic data acquisition techniques for landfill investigations. The symposium on the application of geophysics to engineering problems. The Society of Engineering and Mineral Exploration Geophysics, Golden CO, pp 735–746

    Google Scholar 

  • Suski B, Revil A, Titov K, Konosavsky P, Voltz M, Dagès C, Huttel O (2006) Monitoring of an infiltration experiment using the self-potential method. Water Resour Res 42(8):1–11. doi:10.1029/2005WR004840

  • Tchobanoglou G, Kreith F (2002) Solid Waste Handbook, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Tezkan B (1999) A review of environmental application of quasistationary electromagnetic techniques. Surv Geophys 20(3/4):279–308. doi:10.1023/A:1006669218545

    Article  Google Scholar 

  • Tezkan B, Goldman M, Greinwald S, Hördt A, Müller I, Neubauer FM, Zacher G (1996) A joint application of radiomagnetotellurics and transient electromagnetics to the investigation of a waste deposit in Cologne (Germany). J Appl Geophys 34(3):199–212. doi:10.1016/0926-9851(95)00016-X

    Article  Google Scholar 

  • Tezkan B, Hördt A, Gobashy M (2000) Two-dimensional radiomagnetotelluric investigation of industrial and domestic waste sites in Germany. J Appl Geophys 44(2–3):237–256. doi:10.1016/S0926-9851(99)00014-2

    Article  Google Scholar 

  • Tsourlos P, Vargemezis GN, Fikos I, Tsokas GN (2014) DC geoelectrical methods applied to landfill investigation: case studies from Greece. First Break 32(8):81–89

    Google Scholar 

  • Valois R, Galibert P-Y, Guerin R, Plagnes V (2016) Application of combined time-lapse seismic refraction and electrical resistivity tomography to the analysis of infiltration and dissolution processes in the epikarst of the Causse du Larzac (France). Near Surf Geophys 14(1):13–22. doi:10.3997/1873-0604.2015052

    Google Scholar 

  • Vargemezis G, Tsourlos P, Giannopoulos A, Trilyrakis P (2015) 3D electrical resistivity tomography technique for the investigation of a construction and demolition waste landfill site. Stud Geophys Geod 59(3):461–476. doi:10.1007/s11200-014-0146-5

    Article  Google Scholar 

  • Villain L, Sundström N, Perttu N, Alakangas L, Öhlander B (2011) Geophysical investigations to identify groundwater pathways at a small open-pit copper mine reclaimed by backfilling and sealing, pp 71–76

    Google Scholar 

  • Walther EG, Pitchford AM, Olhoeft GR (1986) A strategy for detecting subsurface organic contaminants. The petroleum hydrocarbons and organic chemicals in ground water, prevention, detection and restoration. National Water Well Association, Houston, TX, pp 357–381

    Google Scholar 

  • Wang T-P et al (2015) Applying FDEM, ERT and GPR at a site with soil contamination: a case study. J Appl Geophys 121:21–30. doi:10.1016/j.jappgeo.2015.07.005

    Article  Google Scholar 

  • Weigel M (1989) Self-potential surveys on waste dumps theory and practice. Detection of subsurface flow phenomena. Springer, Berlin, pp 109–120

    Chapter  Google Scholar 

  • Weller A, Frangos W, Seichter M (2000) Three-dimensional inversion of induced polarization data from simulated waste. J Appl Geophys 44(2–3):67–83. doi:10.1016/S0926-9851(00)00007-0

    Article  Google Scholar 

  • Whiteley RJ, Jewell C (1992) Geophysical techniques in contaminated lands assessment: do they deliver? Explor Geophys 23:557–565

    Article  Google Scholar 

  • Wijesekara HR, De Silva SN, Wijesundara DTDS, Basnayake BFA, Vithanage MS (2015) Leachate plume delineation and lithologic profiling using surface resistivity in an open municipal solid waste dumpsite, Sri Lanka. Environ Technol 36(23):2936–2943. doi:10.1080/09593330.2014.963697

    Article  CAS  Google Scholar 

  • Wijewardana YNS, Galagedara LW, Mowjood MIM, Kawamoto K (2015) Assessment of iInorganic pollutant contamination in groundwater using ground penetrating radar (GPR). Trop Agric Res 26(4):700. doi:10.4038/tar.v26i4.8132

    Article  Google Scholar 

  • Williams JHW, Lapham WW, Barringer TH (1993) Application of electromagnetic logging to contamination investigations in Glacial Sand-and-Gravel Aquifers. Ground Water Monit Remediat 13(3):129–138. doi:10.1111/j.1745-6592.1993.tb00082.x

    Article  Google Scholar 

  • Yin K, Tong HH, Noh O, Wang J-Y, Giannis A (2015) Mapping refuse profile in Singapore old dumping ground through electrical resistivity, s-wave velocity and geotechnical monitoring. Bull Environ Contam Toxicol 94(3):275–281. doi:10.1007/s00128-014-1427-y

    Article  CAS  Google Scholar 

  • Zacher G, Tezkan B, Neubauer FM, Hoerdt A, Mueller I (1996) Radio magnetotellurics: a powerful tool for waste-site exploration. Eur J Environ Eng Geophys 1:135–159

    Google Scholar 

  • Zekkos DP (2005) Evaluation of static and dynamic properties of municipal solid-waste. University of California at Berkeley

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pantelis Soupios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Soupios, P., Ntarlagiannis, D. (2017). Characterization and Monitoring of Solid Waste Disposal Sites Using Geophysical Methods: Current Applications and Novel Trends. In: Sengupta, D., Agrahari, S. (eds) Modelling Trends in Solid and Hazardous Waste Management. Springer, Singapore. https://doi.org/10.1007/978-981-10-2410-8_5

Download citation

Publish with us

Policies and ethics