Advertisement

Characterization and Monitoring of Solid Waste Disposal Sites Using Geophysical Methods: Current Applications and Novel Trends

Chapter

Abstract

Landfilling remains the most attractive waste management method for solid waste. Although not the most efficient and environmental-friendly option, landfills offer a cost-efficient solution compared to other alternatives. For any landfill to be successful site selection, construction, operation, and post-closure monitoring is critical. Synergistic use of geophysical methods and traditional point sampling (e.g., borehole sampling) allows for high resolution characterization and monitoring of landfills during all stages of operation; from guided site selection, to construction integrity and waste characterization, to leachate recirculation and leak monitoring. Geophysical methods offer advantages, such as high temporal and spatial resolution, non (or minimally) invasive and cost-efficient operation, rendering them a very powerful tool for characterization, and long-term monitoring of waste disposal sites. Since geophysical methods involve the indirect imaging of the subsurface cautious implementation, including direct sampling, is needed for successful application. Multiple geophysical methods have been shown to be suitable for landfill characterization and monitoring. Electrical (resistivity, induced polarization, and self potential) and electromagnetic (transient electromagnetic methods, ground penetrating) are the common geophysical methods employed in waste management operations due to the increased conductivity of waste and leachate. Seismic methodologies can also be used to describe subsurface geology and possible waste horizons. In certain cases, magnetic measurements can also be used for the monitoring and characterization of landfills. Typically, geophysical methods are used to:
  • spatially delineate landfills and define landfill geometry,

  • monitor and characterize the spatial distribution of moisture, gas content, and leachate inside landfills,

  • identify classes of buried waste based on material composition,

  • monitor the integrity of the liner, and

  • identify and monitor leachate leaks, and the associated contamination plumes.

With this chapter we aim to introduce common geophysical methods and provide examples for application in landfills. For the geophysical methods of interest the basics principles, along with up to date references are provided, and the advantages and limitations for waste management operations are discussed.

Keywords

Electrical Resistivity Imaging Ground Penetrate Radar Geophysical Method Induce Polarization Waste Disposal Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdulrahman A, Nawawi M, Saad R, Abu-Rizaiza AS, Yusoff MS, Khalil AE, Ishola KS (2016) Characterization of active and closed landfill sites using 2D resistivity/IP imaging: case studies in Penang, Malaysia. Environ Earth Sci 75(4):347. doi: 10.1007/s12665-015-5003-5 CrossRefGoogle Scholar
  2. Almadani S, Ibrahim E, Abdelrahman K, Al-Bassam A, Al-Shmrani A (2015) Magnetic and seismic refraction survey for site investigation of an urban expansion site in Abha District, Southwest Saudi Arabia. Arab J Geosci 8(4):2299–2312. doi: 10.1007/s12517-014-1342-x CrossRefGoogle Scholar
  3. Ammar AI, Kruse SE (2016) Resistivity soundings and VLF profiles for siting groundwater wells in a fractured basement aquifer in the Arabian Shield, Saudi Arabia. J African Earth Sci 116:56–67. doi: 10.1016/j.jafrearsci.2015.12.020 CrossRefGoogle Scholar
  4. Anbazhagan P, SivakumarBabu G, Lakshmikanthan P, VivekAnand K (2016) Seismic characterization and dynamic site response of a municipal solid waste landfill in Bangalore, India. Waste Manag Res 34(3):205–213. doi: 10.1177/0734242X15622814 CrossRefGoogle Scholar
  5. Annan AP (1992) Ground penetrating radar. Mississauga, ON, CanadaGoogle Scholar
  6. Aristodemou E, Thomas-Betts A (2000) DC resistivity and induced polarisation investigations at a waste disposal site and its environments. J Appl Geophys 44(2–3):275–302. doi: 10.1016/S0926-9851(99)00022-1 CrossRefGoogle Scholar
  7. Arora T, Linde N, Revil A, Castermant J (2007) Non-intrusive characterization of the redox potential of landfill leachate plumes from self-potential data. J Contam Hydrol 92(3–4):274–292. doi: 10.1016/j.jconhyd.2007.01.018
  8. ASTM (2001) Standard guide for using the frequency domain electromagnetic method for subsurface investigations, ASTM D6639-01Google Scholar
  9. ASTM (2005) Standard guide for using the surface ground penetrating radar method for subsurface investigation ASTM D6432-99Google Scholar
  10. ASTM (2006) Standard guide for using the seismic refraction method for subsurface investigation. J Appl Geophys 44(2–3):167–180. doi: 10.1016/S0926-9851(98)00033-0 Google Scholar
  11. Atekwana EA, Sauck W, Werkema WA Jr (2000) Investigations of geoelectrical signatures at a hydrocarbon contaminated site. J Appl Geophys 44(2–3):167–180. doi: 10.1016/S0926-9851(98)00033-0 CrossRefGoogle Scholar
  12. Atekwana EA, Mewafy FM, Abdel Aal G, Werkema DD, Revil A, Slater LD (2014) High- resolution magnetic susceptibility measurements for investigating magnetic mineral formation during microbial mediated iron reduction. J Geophys Res Biogeosci 119(1):80–94. doi: 10.1002/2013JG002414 CrossRefGoogle Scholar
  13. Augello A, Bray J, Abrahamson N, Seed R (1998) Dynamic properties of solid waste based on back-analysis of OII landfill. ASCE J Geotech Geoenviron Eng 124(3):211–222CrossRefGoogle Scholar
  14. Baker H, Gabr A, Djeddi M (2015) Geophysical and geotechnical techniques: complementary tools in studying subsurface features. In: International conference on engineering geophysics, Al Ain, United Arab Emirates, 15–18 Nov 2015, Society of Exploration Geophysicists, pp 2–5Google Scholar
  15. Barlaz MA, Reinhart D (2004) Bioreactor landfills: progress continues. Waste Manag 24(9):859–860. doi: 10.1016/j.wasman.2004.09.001 CrossRefGoogle Scholar
  16. Belghazal H, Piga C, Loddo F, El Messari JS, Touhami AO (2013) Geophysical surveys for the characterization of landfills. Int J Innov Appl Stud 4(2):254–263Google Scholar
  17. Belmonte-jiménez SI, Bortolotti-villalobos A, Campos-enríquez JÓ, Pérez-flores MA, Delgado- rodríguez O, Ensenada-tijuana C, Playitas Z, California B, México CP (2014) Electromagnetic methods application for characterizing a site. Rev Int Contam Ambie 30(3):317–329Google Scholar
  18. Benson RC, Yuhr LB (2016) Engineering measurements and monitoring. Site characterization in karst and pseudokarst terraines. Springer, Netherlands, Dordrecht, pp 265–273CrossRefGoogle Scholar
  19. Benson RR, Glaccum A, Noel M (1988) Geophysical techniques for sensing buried wastes and waste migration. National Water Well Association, DublinGoogle Scholar
  20. Bevc D, Morrison H (1991) Borehole-to-surface electrical resistivity monitoring of a salt water injection experiment. Geophysics 56(6):769–777CrossRefGoogle Scholar
  21. Bijaksana S, Huliselan E, Safiuddin LO, Fitriani D, Tamuntuan G, Agustine E (2013) Rock magnetic methods in soil and environmental studies: fundamentals and case studies. Procedia Earth Planet Sci 6:8–13. doi: 10.1016/j.proeps.2013.01.001 CrossRefGoogle Scholar
  22. Binley A, Daily W, Ramirez A (1997) Detecting leaks from environmental barriers using electrical current imaging. J Environ Eng Geophys 2(1):11–19. doi: 10.4133/JEEG2.1.11 CrossRefGoogle Scholar
  23. Binley A, Winship P, West LJJ, Pokar M, Middleton R (2002a) Seasonal variation of moisture content in unsaturated sandstone inferred from borehole radar and resistivity profiles. J Hydrol 267(3–4):160–172. doi: 10.1016/S0022-1694(02)00147-6 CrossRefGoogle Scholar
  24. Binley A, Cassiani G, Middleton R, Winship P (2002b) Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging. J Hydrol 267(3–4):147–159. doi: 10.1016/S0022-1694(02)00146-4 CrossRefGoogle Scholar
  25. Bisdorf RJ, Lucius JE (1999) Mapping the Norman, Oklahoma landfill contamination plume using electrical geophysics. In: Morganwalp HT, Buxton DW (eds) US geological survey toxic substances hydrology program proceedings of the technical meeting, US Geological Survey Water-Resources Investigations Report 99-4018-C, Charleston, South Carolina, pp 579–584Google Scholar
  26. Blum R (1998) Geoelectrical mapping and groundwater contamination. In: Merkler GP (ed) Detection of subsurface flow phenomena. Springer, Berlin, pp 253–260Google Scholar
  27. Boyce JI, Eyles N, Pugin A (1995) Seismic reflection, borehole and outcrop geometry of late wisconsin tills at a proposed landfill near Toronto, Ontario. Can J Earth Sci 32(9):1331–1349. doi: 10.1139/e95-108 CrossRefGoogle Scholar
  28. Briggs MA, Campbell S, Nolan J, Walvoord MA, Ntarlagiannis D, Day-Lewis FD, Lane JW (2016) Surface geophysical methods for characterizing the active layer and shallow permafrost features. Permafr Periglac Process doi: 10.1002/ppp.1893
  29. Buselli G, Lu K (2001) Groundwater contamination monitoring with multichannel electrical and electromagnetic methods. J Appl Geophys 48(1):11–23. doi: 10.1016/S0926-9851(01)00055-6 CrossRefGoogle Scholar
  30. Calkin S (1989) A shallow seismic refraction survey of the Mallard North Landfill—Hanover Park. Northern Illinois Univ, IL, USGoogle Scholar
  31. Cardarelli E, Bernabini M (1997) Two case studies of the determination of parameters of urban waste dumps. J Appl Geophys 36(4):167–174. doi: 10.1016/S0926-9851(96)00056-0 CrossRefGoogle Scholar
  32. De Carlo L et al (2013) Characterization of a dismissed land fi ll via electrical resistivity tomography and mise-à-la-masse method. J Appl Geophys 98:1–10. doi: 10.1016/j.jappgeo.2013.07.010 CrossRefGoogle Scholar
  33. Carpenter PJ, Calkin SF, Kaufmann RS (1991) Assessing a fractured landfill cover using electrical resistivity and seismic refraction techniques. Geophysics 56(11):1896–1904. doi: 10.1190/1.1443001 CrossRefGoogle Scholar
  34. Cassiani G, Bruno V, Villa A, Fusi N, Binley A (2006) A saline trace test monitored via time- lapse surface electrical resistivity tomography. J Appl Geophys 59(3):244–259. doi: 10.1016/j.jappgeo.2005.10.007 CrossRefGoogle Scholar
  35. Chambers JE, Kuras O, Meldrum PI, Ogilvy RD, Hollands J (2006) Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics 71(6):B231–B239. doi: 10.1190/1.2360184 CrossRefGoogle Scholar
  36. Chira Oliva P, Barbalho Pires D, Ribeiro Cruz J (2015) Environmental study of the Bragança City landfill (Brazil) applying ground penetrating radar. EAGE, 21st European Meeting of Environmental and Engineering Geophysics. doi:  10.3997/2214-4609.201413820
  37. Chongo M, Christiansen AV, Fiandaca G, Nyambe IA, Larsen F, Bauer-Gottwein P (2015) Mapping localised freshwater anomalies in the brackish paleo-lake sediments of the Machile-Zambezi Basin with transient electromagnetic sounding, geoelectrical imaging and induced polarisation. J Appl Geophys 123:81–92. doi: 10.1016/j.jappgeo.2015.10.002 CrossRefGoogle Scholar
  38. Çınar H, Altundaş S, Ersoy E, Bak K, Bayrak N (2016) Application of two geophysical methods to characterize a former waste disposal site of the Trabzon-Moloz district in Turkey. Environ Earth Sci 75(1):52. doi: 10.1007/s12665-015-4839-z CrossRefGoogle Scholar
  39. Clément R, Descloitres M, Günther T, Oxarango L, Morra C, Laurent J-P, Gourc J-P (2010) Improvement of electrical resistivity tomography for leachate injection monitoring. Waste Manag 30(3):452–464. doi: 10.1016/j.wasman.2009.10.002 CrossRefGoogle Scholar
  40. Daily W, Ramirez A, LaBrecque D, Nitao J (1992) Electrical resistivity tomography of vadose water movement. Water Resour Res 28(5):1429–1442. doi: 10.1029/91WR03087 CrossRefGoogle Scholar
  41. Dantas RRS, Medeiros WE (2016) Resolution in crosswell travel time tomography: the dependence on illumination. Geophysics 81(1):W1–W12. doi: 10.1190/geo2015-0119.1 CrossRefGoogle Scholar
  42. Davis JL, Annan AP (1989) Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy 1. Geophys Prospect 37(5):531–551. doi: 10.1111/j.1365-2478.1989.tb02221.x CrossRefGoogle Scholar
  43. Dawson C, Lane J Jr (2002) Integrated geophysical characterization of the Winthrop landfill southern flow path, Winthrop, Maine. … Appl Geophys … 1–22Google Scholar
  44. Delgado J, López Casado C, Estévez A, Giner J, Cuenca A, Molina S (2000a) Mapping soft soils in the Segura river valley (SE Spain): a case study of microtremors as an exploration tool. J Appl Geophys 45(1):19–32. doi: 10.1016/S0926-9851(00)00016-1 CrossRefGoogle Scholar
  45. Delgado J, López Casado C, Giner J, Estévez A, Cuenca A, Molina S (2000b) Microtremors as a geophysical exploration tool: applications and limitations. Pure Appl Geophys 157(9):1445–1462. doi: 10.1007/PL00001128 CrossRefGoogle Scholar
  46. Delgado J, Alfaro P, Galindo-Zaldivar J, Jabaloy A, López Garrido CA, Sanz de Galdeano C (2002) Structure of the Padul-Nigüelas Basin (S Spain) from H/v ratios of ambient noise: application of the method to study peat and coarse sediments. Pure Appl Geophys 159(11–12)–2749. doi: 10.1007/s00024-002-8756-1
  47. Doll WE (1998) Reprocessing of shallow seismic reflection data to image faults near a hazardous waste site on the Oak Ridge Reservation, Tennessee. In: Symposium application geophysics environmental engineering problems (SAGEEP), proceedings. Environmental and Engineering Geophysical Society, Denver, CO, pp 705–714Google Scholar
  48. Doll WE, Miller RD, Xia J (1996) Enhancement of swept source near-surface seismic reflection data at a hazardous waste site. In: 66th Annual international meeting society of exploration geophysicists expanded abstracts, Society of Exploration Geophysics, Tulsa, OK, pp 877–879Google Scholar
  49. Fawcett JD (1989) Hydrogeologic assessment, design and remediation of a shallow groundwater contaminated zone. In: Proceedings of the 3rd national outdoor action conference on aquifer restoration, ground water monitoring and geophysical methods, National Water Well Association, Orlando, pp 591–605Google Scholar
  50. French HK, Hardbattle C, Binley A, Winship P, Jakobsen L (2002) Monitoring snowmelt induced unsaturated flow and transport using electrical resistivity tomography. J Hydrol 267(3–4):273–284. doi: 10.1016/S0022-1694(02)00156-7 CrossRefGoogle Scholar
  51. Gazoty A, Fiandaca G, Pedersen J, Auken E, Christiansen AV, Pedersen JK (2012) Application of time domain induced polarization to the mapping of lithotypes in a landfill site. Hydrol Earth Syst Sci 16(6):1793–1804. doi: 10.5194/hess-16-1793-2012
  52. Genelle F, Sirieix C, Riss J, Naudet V, Dabas M, Bégassat P (2014) Detection of landfill cover damage using geophysical methods. Near Surf Geophys 12(2036):599–611. doi: 10.3997/1873-0604.2014018 Google Scholar
  53. Gouveia F, Lopes I, Gomes RC (2016) Deeper VS profile from joint analysis of Rayleigh wave data. Eng Geol 202:85–98. doi: 10.1016/j.enggeo.2016.01.006 CrossRefGoogle Scholar
  54. Granda A, Cambero JC (1998) The use of geophysical techniques for the detection and characterization of landfill in areas of urban development. In: 4th annual meeting environmental engineering geophysics society, european section, proceedings, Environmental and Engineering Geophysical Society, Lausanne, Switzerland, pp 111–114Google Scholar
  55. Green A, Lanz E, Maurer H (1999) A template for geophysical investigations of small landfills. Lead Edge 18(2):248–254CrossRefGoogle Scholar
  56. Greenhouse J, Harris R (1983) Migration of contaminants in groundwater at a landfill: a case study. J Hydrol 63(1–2):177–197. doi: 10.1016/0022-1694(83)90227-5 CrossRefGoogle Scholar
  57. Greenhouse JP, Monier-Williams M (1985) Geophysical Monitoring of ground water contamination around waste disposal sites. Ground Water Monit Remediat 5(4):63–69. doi: 10.1111/j.1745-6592.1985.tb00940.x CrossRefGoogle Scholar
  58. Greenwood W, Zekkos D, Sahadewa A (2015) Spatial variation of shear wave velocity of waste materials from surface wave measurements. J Environ Eng Geophys 20(4):287–301. doi: 10.2113/JEEG20.4.287 CrossRefGoogle Scholar
  59. Grellier S, Guerin R, Robain H, Bobachev A, Vermeersch F, Tabbagh A (2008) Monitoring of leachate recirculation in a bioreactor landfill by 2-D electrical resistivity imaging. J Environ Eng Geophys 13(4):351–359. doi: 10.2113/JEEG13.4.351 CrossRefGoogle Scholar
  60. Guérin R, Munoz ML, Aran C, Laperrelle C, Hidra M, Drouart E, Grellier S (2004) Leachate recirculation: moisture content assessment by means of a geophysical technique. Waste Manag 24(8):785–794. doi: 10.1016/j.wasman.2004.03.010 CrossRefGoogle Scholar
  61. Günther T, Martin T (2016) Spectral two-dimensional inversion of frequency-domain induced polarization data from a mining slag heap. J Appl Geophys 1–13. doi: 10.1016/j.jappgeo.2016.01.008
  62. Hall DW, Pasicznyk DL (1987) Application of seismic refraction and terrain conductivity methods at a ground water pollution site in North-Central New Jersey. In: Graves B, Lehr JH, Butcher K, Alcorn P, Ammerman L, Williams P, Renz M, Shelton V (eds) 1st national outdoor action conference on aquifer restoration, groundwater monitoring and geophysical methods. National Water Well Association, Las Vegas, Nevada, pp 505–524Google Scholar
  63. Hämmann M, Maurer HR, Green AG, Horstmeyer H (1997) Self-Potential Image Reconstruction: Capabilities and Limitations. J Environ Eng Geophys 2(1):21–35. doi: 10.4133/JEEG2.1.21 CrossRefGoogle Scholar
  64. Heenan J, Slater LD, Ntarlagiannis D, Atekwana EA, Fathepure BZ, Dalvi S, Ross C, Werkema DD, Atekwana EA (2015) Electrical resistivity imaging for long-term autonomous monitoring of hydrocarbon degradation: lessons from the deepwater horizon oil spill. Geophysics 80(1):B1–B11. doi: 10.1190/geo2013-0468.1 CrossRefGoogle Scholar
  65. Hix K (1998) Leak detection for landfill liners: overview of tools for vadoze zone monitoring. Technical status report EPA-542-R-98-019, US Environmental Protection Agency, Washington, DCGoogle Scholar
  66. Huliselan EK, Bijaksana S, Srigutomo W, Kardena E (2010) Scanning electron microscopy and magnetic characterization of iron oxides in solid waste landfill leachate. J Hazard Mater 179(1–3):701–708. doi: 10.1016/j.jhazmat.2010.03.058 CrossRefGoogle Scholar
  67. Hutchinson PJ (1995) The geology of landfills. Environl Geosci 2(1):2–14Google Scholar
  68. Hutchinson PJ, Barta LS (2000) Geophysical applications to solid waste analysis. In: Zandi I WS, Mersky RL (eds) The 16th international conference on solid waste technology and management, Philadelphia, PA, USA, pp 2–78Google Scholar
  69. De Iaco R, Green A, Maurer H-R, Horstmeyer H (2003) A combined seismic reflection and refraction study of a landfill and its host sediments. J Appl Geophys 52(4):139–156. doi: 10.1016/S0926-9851(02)00255-0 CrossRefGoogle Scholar
  70. Iwalewa TM, Makkawi MH (2015) Site characterization and risk assessment in support of the design of groundwater remediation well near a hazardous landfill. Arab J Geosci 8(3):1705–1715. doi: 10.1007/s12517-014-1300-7 CrossRefGoogle Scholar
  71. Jobin P, Mercier G, Blais J-F (2016) Magnetic and density characteristics of a heavily polluted soil with municipal solid waste incinerator residues: significance for remediation strategies. Int J Miner Process 149:119–126. doi: 10.1016/j.minpro.2016.02.010 CrossRefGoogle Scholar
  72. Jodeiri Shokri B, Doulati Ardejani F, Moradzadeh A (2016) Mapping the flow pathways and contaminants transportation around a coal washing plant using the VLF-EM, Geo-electrical and IP techniques—a case study, NE Iran. Environ Earth Sci 75(1):62. doi: 10.1007/s12665-015-4776-x CrossRefGoogle Scholar
  73. Johnson TC, Wellman D (2015) Accurate modelling and inversion of electrical resistivity data in the presence of metallic infrastructure with known location and dimension. Geophys J Int 202(2):1096–1108. doi: 10.1093/gji/ggv206 CrossRefGoogle Scholar
  74. Karagoz O, Chimoto K, Citak S, Ozel O, Yamanaka H, Hatayama K (2015) Estimation of shallow S-wave velocity structure and site response characteristics by microtremor array measurements in Tekirdag region. NW Turkey, Earth, Planets Sp 67(1):176. doi: 10.1186/s40623-015-0320-1 CrossRefGoogle Scholar
  75. Kavazanjian EJ, Matasovic N (1995) Seismic analysis of solid waste landfills. The geoenvironment 2000 specialty conference. ASCE, New Orleans, Louisiana, pp 24–26Google Scholar
  76. Kavazanjian EJ, Matasovic N, Stokoe K, Bray JD (1996) In situ shear wave velocity of solid waste from surface wave measurements. In: 2nd international congress environmental geotechnics, Balkema, Osaka, Japan, pp 97–104Google Scholar
  77. Kemna A, Binley A, Ramirez A, Daily W (2000) Complex resistivity tomography for environmental applications. Chem Eng J 77(1–2):11–18CrossRefGoogle Scholar
  78. Kemna A, Binley A, Slater L (2004) Crosshole IP imaging for engineering and environmental applications. Geophysics 69(1):97–107. doi: 10.1190/1.1649379 CrossRefGoogle Scholar
  79. Kemna A et al (2012) An overview of the spectral induced polarization method for near-surface applications. Near Surf Geophys 453–468. doi: 10.3997/1873-0604.2012027
  80. Kim J-E, Ha D-W, Kim Y-H (2015) Separation of steel slag from landfill waste for the purpose of decontamination using a superconducting magnetic separation system. IEEE Trans Appl Supercond 25(3):1–4. doi: 10.1109/TASC.2014.2365954 Google Scholar
  81. Klefstad G, Sendlein LVA, Palmquist RC (1977) Limitations of the electrical resistivity method in landfill investigations. Ground Water 15(5):418–427. doi: 10.1111/j.1745-6584.1977.tb03185.x CrossRefGoogle Scholar
  82. Knight MJ, Leonard JG, Whiteley RJ (1978) Lucas heights solid waste landfill and downstream leachate transport—a case study in environmental geology. Bull Int Assoc Eng Geol 18(1):45–64. doi: 10.1007/BF02635349 CrossRefGoogle Scholar
  83. Konstantaki LA (2016) Imaging and characterization of heterogeneous landfills using geophysical methods. PhD Thesis, Delft University of TechnologyGoogle Scholar
  84. Konstantaki LA, Draganov D, Ghose R, Heimovaara T (2015) Seismic interferometry as a tool for improved imaging of the heterogeneities in the body of a landfill. J Appl Geophys 122:28–39. doi: 10.1016/j.jappgeo.2015.08.008 CrossRefGoogle Scholar
  85. Kourgialas NN, Dokou Z, Karatzas GP, Panagopoulos G, Soupios P, Vafidis A, Manoutsoglou E, Schafmeister M (2016) Saltwater intrusion in an irrigated agricultural area: combining density-dependent modeling and geophysical methods. Environ Earth Sci 75(1):15. doi: 10.1007/s12665-015-4856-y CrossRefGoogle Scholar
  86. Lanz E, Maurer H, Green AG (1998) Refraction tomography over a buried waste disposal site. Geophysics 63(4):1414–1433. doi: 10.1190/1.1444443 CrossRefGoogle Scholar
  87. Linde N, Doetsch J, Jougnot D, Genoni O, Dürst Y, Minsley BJ, Vogt T, Pasquale N, Luster J (2011) Self-potential investigations of a gravel bar in a restored river corridor. Hydrol Earth Syst Sci 15(3):729–742. doi: 10.5194/hess-15-729-2011 CrossRefGoogle Scholar
  88. Mack TJ, Maus PE (1986) Detection of contaminant plumes in ground water of Long Island, New York. USGS, Water Resources Investigations Report, 86–4045Google Scholar
  89. Maineult A, Bernabé Y, Ackerer P (2006) Detection of advected, reacting redox fronts from self- potential measurements. J Contam Hydrol 86(1–2):32–52. doi: 10.1016/j.jconhyd.2006.02.007 CrossRefGoogle Scholar
  90. Malte Ibs-von S, Wohlenberg J (1999) Microtremor measurements used to map thickness of soft sediments. Bull Seism Soc Am 89(1):250–259Google Scholar
  91. Matasovic N, Kavazanjian EJ (1998) Cyclic Characterization of OII Landfill Solid Waste. J Geotech Geoenviron Eng 124(3):197–210. doi: 10.1061/1090-0241 CrossRefGoogle Scholar
  92. McQuown M, Becker S, Miller P, BSR, MPT, McQuown MS (1991) Subsurface characterization of a landfill using integrated geophysical techniques. In: 5th national outdoor action conference on aquifer restoration, ground water monitoring and geophysical methods, Water Well Journal Publishing, Las Vegas, NV, pp 933–946Google Scholar
  93. Meju M (2000a) Environmental geophysics: the tasks ahead. J Appl Geophys 44(2–3):63–65. doi: 10.1016/S0926-9851(00)00006-9 CrossRefGoogle Scholar
  94. Meju MA (2000b) Geoelectrical investigation of old/abandoned, covered landfill sites in urban areas: model development with a genetic diagnosis approach. J Appl Geophys 44(2–3):115–150. doi: 10.1016/S0926-9851(00)00011-2 CrossRefGoogle Scholar
  95. Minsley BJ, Smith BD, Hammack R, Sams JI, Veloski G (2012) Calibration and filtering strategies for frequency domain electromagnetic data. J Appl Geophys 80:56–66. doi: 10.1016/j.jappgeo.2012.01.008 CrossRefGoogle Scholar
  96. Monteiro Santos FA, Mateus A, Figueiras J, Gonzalves MA (2006) Mapping groundwater contamination around a landfill facility using the VLF-EM method—a case study. J Appl Geophys 60(2):115–125. doi: 10.1016/j.jappgeo.2006.01.002 CrossRefGoogle Scholar
  97. Murray C, Keiswetter D, Rostosky E (1999) Seismic refraction case studies at environmental sites. In: symp applic geophys environ engin prob (SAGEEP), proceedings. Environmental and Engineering Geophysical Society, Environmental and Engineering Geophysical Society, Denver, CO, pp 235–244Google Scholar
  98. Mwakanyamale K, Slater L, Binley A, Ntarlagiannis D (2012) Lithologic imaging using complex conductivity: lessons learned from the Hanford 300 Area. Geophysics 77(6):E397–E409. doi: 10.1190/geo2011-0407.1 CrossRefGoogle Scholar
  99. Naudet V (2003a) Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater. Geophys Res Lett 30(21):2091. doi: 10.1029/2003GL018096 CrossRefGoogle Scholar
  100. Naudet V (2003b) Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater. Geophys Res Lett 30(21):1–4. doi: 10.1029/2003GL018096 CrossRefGoogle Scholar
  101. Newman GA, Recher S, Tezkan B, Neubauer FM (2003) 3D inversion of a scalar radio magnetotelluric field data set. Geophysics 68(3):791–802. doi: 10.1190/1.1581032 CrossRefGoogle Scholar
  102. Nimmer RE (2002) Direct current and self-potential monitoring of an evolving plume in partially saturated fractured rock. J Hydrol 267(3–4):258–272. doi: 10.1016/S0022-1694(02)00155-5 CrossRefGoogle Scholar
  103. Nobes DC (1996) Troubled waters: environmental applications of electrical and electromagnetic methods. Surv Geophys 17(4):393–454. doi: 10.1007/BF01901640 CrossRefGoogle Scholar
  104. Ntarlagiannis D, Robinson J, Soupios P, Slater L (2016) Field-scale electrical geophysics over an olive oil mill waste deposition site: evaluating the information content of resistivity versus induced polarization (IP) images for delineating the spatial extent of organic contamination. J Appl Geophys 62:1–9. doi: 10.1016/j.jappgeo.2016.01.017 Google Scholar
  105. Nyquist JE, Corry CE (2002) Self-potential: the ugly duckling of environmental geophysics. Lead Edge 21(5):446–451. doi: 10.1190/1.1481251 CrossRefGoogle Scholar
  106. Olhoeft GR, King TVV (1991) Mapping subsurface organic compounds noninvasively by their reactions with clays. In: The 4th toxic substances technical meeting, Monterey, CA, pp 1–18Google Scholar
  107. Orlando L, Marchesi E (2001) Georadar as a tool to identify and characterize solid waste dump deposits. J Appl Geophys 48:163–174CrossRefGoogle Scholar
  108. Parolai S (2002) New Relationships between Vs, Thickness of Sediments, and Resonance Frequency Calculated by the H/V Ratio of Seismic Noise for the Cologne Area (Germany). Bull Seismol Soc Am 92(6):2521–2527. doi: 10.1785/0120010248 CrossRefGoogle Scholar
  109. Parolai S, Bormann P, Milkereit C (2001) Assessment of the natural frequency of the sedimentary cover in the cologne area (Germany) using noise measurements. J Earthq Eng 5(4):541–564. doi: 10.1080/13632460109350405 CrossRefGoogle Scholar
  110. Pasasa L, Wenzel F, Zhao P (1998) Prestack Kirchhoff depth migration of shallow seismic data. Geophysics 63(4):1241–1247. doi: 10.1190/1.1444425 CrossRefGoogle Scholar
  111. Pellerin L (2002) Applications of electrical and electromagnetic methods for environmental and geotechnical investigations. Surv Geophys 23(2/3):101–132. doi: 10.1023/A:1015044200567 CrossRefGoogle Scholar
  112. Petiau G (2000) Second generation of lead-lead chloride electrodes for geophysical applications. Pure Appl Geophys 157(3):357–382. doi: 10.1007/s000240050004 CrossRefGoogle Scholar
  113. Piratoba Morales G, Fenzi N (2000) Environmental impact of the deposit of solid waste of the “Aura” Bele´ m-PA (Brazil). In: 31st international geological congress, Rio de Janeiro, Brazil, p 4218Google Scholar
  114. Placencia-Gómez E, Parviainen A, Hokkanen T, Loukola-Ruskeeniemi K (2010) Integrated geophysical and geochemical study on AMD generation at the Haveri Au–Cu mine tailings, SW Finland. Environ Earth Sci 61(7):1435–1447. doi: 10.1007/s12665-010-0459-9 CrossRefGoogle Scholar
  115. Placencia-Gómez E, Parviainen A, Slater L, Leveinen J (2014) Spectral induced polarization (SIP) response of mine tailings. J Contam Hydrol 173C:8–24. doi: 10.1016/j.jconhyd.2014.12.002 Google Scholar
  116. Porsani JL, Filho WM, Elis VR, Shimeles F, Dourado JC, Moura HP (2004) The use of GPR and VES in delineating a contamination plume in a landfill site: a case study in SE Brazil. J Appl Geophys 55(3–4):199–209. doi: 10.1016/j.jappgeo.2003.11.001 CrossRefGoogle Scholar
  117. Prezzi C, Orgeira MJ, Ostera H, Vásquez CA (2005) Ground magnetic survey of a municipal solid waste landfill: pilot study in Argentina. Environ Geol 47(7):889–897. doi: 10.1007/s00254-004-1198-6 CrossRefGoogle Scholar
  118. Pujari PR, Pardhi P, Muduli P, Harkare P, Nanoti MV (2007) Assessment of pollution near landfill site in Nagpur, India by resistivity imaging and GPR. Environ Monit Assess 131(1–3):489–500. doi: 10.1007/s10661-006-9494-0 CrossRefGoogle Scholar
  119. Ramaiah BJ, Ramana GV, Kavazanjian E, Matasovic N, Bansal BK (2016) Empirical model for shear wave velocity of municipal solid waste in situ. J Geotech Geoenviron Eng 142(1):06015012. doi: 10.1061/(ASCE)GT.1943-5606.0001389 CrossRefGoogle Scholar
  120. Revil a (2003) Principles of electrography applied to self-potential electrokinetic sources and hydrogeological applications. Water Resour Res 39(5):1–15. doi: 10.1029/2001WR000916 CrossRefGoogle Scholar
  121. Revil A, Karaoulis M, Johnson T, Kemna A (2012a) Review: some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeol J 617–658. doi: 10.1007/s10040-011-0819-x
  122. Revil A, Naudet V, Nouzaret J, Pessel M (2003) Principles of electrography applied to self-potential electrokinetic sources and hydrogeological applications, Water Resour Res 39(5). doi: 10.1029/2001WR000916
  123. Revil A, Mendonça CA, Atekwana EA, Kulessa B, Hubbard SS, Bohlen KJ (2010) Understanding biogeobatteries: where geophysics meets microbiology. J Geophys Res 115:G00G02. doi: 10.1029/2009JG001065
  124. Revil A, Karaoulis M, Johnson T, Kemna A (2012b) Review: some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeol J 617–658. doi: 10.1007/s10040-011-0819-x
  125. Reynolds J (2011) An introduction to applied and environmental geophysics, 2nd edn. Wiley, ISBN: 978-0-471-48535-3, p 710Google Scholar
  126. Robertsson JOA, HK, GAG (1996) Source-generated noise in shallow seismic data. Eur J Environ Engin Geophys 1, 107–124Google Scholar
  127. Robinson H, Gronow J (1995) A review of landfill leachate composition in the UK. In: Institute of waste management proceedings, IWM, Northampton, pp 3–8Google Scholar
  128. Robinson J, Johnson T, Slater L (2015) Challenges and opportunities for fractured rock imaging using 3D cross-borehole electrical resistivity. Geophysics 80(2):E49–E61. doi: 10.1190/geo2014-0138.1 CrossRefGoogle Scholar
  129. Robinson J et al (2015b) Imaging pathways in fractured rock using three-dimensional electrical resistivity tomography. Groundwater. doi: 10.1111/gwat.12356
  130. Rodriguez EB (1987) Application of gravity and seismic methods in hydrogeological mapping at a landfill site in Ontario. In: 1st national outdoor action conference on aquifer restoration, ground water monitoring and geophysical methods, Assoc. of Groundwater Sci. and Eng.—National Water Well Association, Dublin, OH, pp 487–504Google Scholar
  131. Rosqvist H, Destouni G (2000) Solute transport through preferential pathways in municipal solid waste. J Contam Hydrol 46(1–2):39–60. doi: 10.1016/S0169-7722(00)00127-3 CrossRefGoogle Scholar
  132. Rosqvist H, Dahlin T, Lindhe C (2005) Investigation of water flow in a bioreactor landfill using geoelectrical imaging techniques. In: Tenth international waste management and landfill symposium, Proceedings Sardinia 2005, S. Margherita di Pula, Cagliari, ItalyGoogle Scholar
  133. Roth M, Holliger K, Green AG (1998) Guided waves in near-surface seismic surveys. Geophys Res Lett 98:235–248Google Scholar
  134. Rozycki A, Fonticiella JMR, Cuadra A (2006) Detection and evaluation of horizontal fractures in earth dams using the self-potential method 82:145–153. doi: 10.1016/j.enggeo.2005.09.013 Google Scholar
  135. Rubin Y, Hubbard SS (eds) (2005) Hydrogeophysics. Water Science and Technology Library, Springer, Netherlands, DordrechtGoogle Scholar
  136. Russell GM (1990) Application of geophysical techniques for assessing groundwater contamination near a landfill at Stuart, Florida. In: The FOCUS conference on eastern regional ground water issues, NWWA, Springfield, Mass, pp 211–225Google Scholar
  137. Sahadewa A, Zekkos D, Woods RD, Stokoe KH (2015) Field testing method for evaluating the small-strain shear modulus and shear modulus nonlinearity of solid waste. Geotech Test J 38(4):20140016. doi: 10.1520/GTJ20140016 CrossRefGoogle Scholar
  138. Sato M, Mooney HM (1960) The electrochemical mechanism of sulfide self-potentials. Geophysics 25(1):226–249. doi: 10.1190/1.1438689 CrossRefGoogle Scholar
  139. Sauck WA (2000) A model for the resistivity structure of LNAPL plumes and their environs in sandy sediments. J Appl Geophys 44(2–3):151–165. doi: 10.1016/S0926-9851(99)00021-X CrossRefGoogle Scholar
  140. Sauck WA, Atekwana EA, Nash MS (1998) High conductivities associated with an LNAPL plume imaged by integrated geophysical techniques. J Environ Eng Geophys 2(3):203–212Google Scholar
  141. Scaife JE, Annan AP (1991) Ground penetrating radar: a powerful, high resolution tool for mining engineering and environmental problems. Sensors and Software. Internal Report, IR-59, p 24.Google Scholar
  142. Sharma HD, Dukes MT, Olsen DM (1990) Field measurements of dynamic moduli and Poisson’s ratios of refuse and underlying soils at a landfill site. In: Landva GD, Knowles A (eds) Geotechnics of waste fills—theory and practice, ASTM STP 1070. American Society for Testing and Materials, Philadelphia, PA, USA, pp 57–70Google Scholar
  143. Shemang EM, Mickus K, Same MP (2011) Geophysical characterization of the abandoned Gaborone Landfill, Botswana: implications for abandoned landfills in arid environments. Int J Environ Protect 1(1):1–12Google Scholar
  144. Slaine DD, Pehme PE, Hunter JA, Pullan SE, Greenhouse JP (1990) Mapping overburden stratigraphy at a proposed hazardous waste facility using shallow seismic reflection methods. In: Ward SH (ed) Geotechnical and environmental geophysics. Environmental and groundwater, vol II. Society of Exploration Geophysics, Tulsa, OK, pp 273–280Google Scholar
  145. Slater L (2007) Near surface electrical characterization of hydraulic conductivity: from petrophysical properties to aquifer geometries—a review. Surv Geophys 28(2–3):169–197. doi: 10.1007/s10712-007-9022-y CrossRefGoogle Scholar
  146. Slater L, Binley A, Daily W, Johnson R (2000) Cross-hole electrical imaging of a controlled saline tracer injection. J Appl Geophys 44(2–3):85–102. doi: 10.1016/S0926-9851(00)00002-1 CrossRefGoogle Scholar
  147. Slater LD, Zaidman MD, Binley A, West LJ (1997) Electrical imaging of saline tracer migration for the investigation of unsaturated zone transport mechanisms. Hydrol Earth Syst Sci 1:291–302CrossRefGoogle Scholar
  148. Soupios P, Vallianatos F, Makris J, Papadopoulos I (2005) Determination of a landfill structure using HVSR, geoelectrical and seismic tomographies. In: International workshop in geoenvironment and geotechnics, Milos Island, Greece, pp 83–90Google Scholar
  149. Soupios P, Papadopoulos N, Papadopoulos I, Kouli M, Vallianatos F, Sarris A, Manios T (2007a) Application of integrated methods in mapping waste disposal areas. Environ Geol 53(3):661–675. doi: 10.1007/s00254-007-0681-2 CrossRefGoogle Scholar
  150. Soupios P, Papadopoulos I, Kouli M, Georgaki I, Vallianatos F, Kokinou E (2007b) Investigation of waste disposal areas using electrical methods: a case study from Chania, Crete, Greece. Environ Geol 51(7):1249–1261. doi: 10.1007/s00254-006-0418-7 CrossRefGoogle Scholar
  151. Soupios P, Piscitelli S, Vallianatos F, Lapenna V (2008) Contamination delineation and characterization of waste disposal sites performing integrated and innovative geophysical methods. In: Waste management research trends, vol 11, pp 221–259Google Scholar
  152. Soupios P, Kourgialas N, Dokou Z, Karatzas G, Panagopoulos G, Vafidis A, Manoutsoglou E (2015) Modeling saltwater intrusion at an agricultural coastal area using geophysical methods and the FEFLOW model. Engineering geology for society and territory, vol 3. Springer International Publishing, Cham, pp 249–252Google Scholar
  153. Splajt T, Ferrier G, Frostick LE (2003) Application of ground penetrating radar in mapping and monitoring landfill sites. Environ Geol 44(8):963–967. doi: 10.1007/s00254-003-0839-5 CrossRefGoogle Scholar
  154. Stanton GP, TP Schrader (2001) Surface geophysical investigation of a chemical waste landfill in northwestern Arkansas. In: U.S. geological survey karst interest group proceedings. Water-Resources Investigations Report 01-4011, pp 107–115Google Scholar
  155. Statom RA, Thyne GD, McCray JE (2004) Temporal changes in leachate chemistry of a municipal solid waste landfill cell in Florida, USA. Environ Geol 45(7):982–991. doi: 10.1007/s00254-003-0957-0 CrossRefGoogle Scholar
  156. Stenson RW (1988) Electromagnetic data acquisition techniques for landfill investigations. The symposium on the application of geophysics to engineering problems. The Society of Engineering and Mineral Exploration Geophysics, Golden CO, pp 735–746Google Scholar
  157. Suski B, Revil A, Titov K, Konosavsky P, Voltz M, Dagès C, Huttel O (2006) Monitoring of an infiltration experiment using the self-potential method. Water Resour Res 42(8):1–11. doi: 10.1029/2005WR004840
  158. Tchobanoglou G, Kreith F (2002) Solid Waste Handbook, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  159. Tezkan B (1999) A review of environmental application of quasistationary electromagnetic techniques. Surv Geophys 20(3/4):279–308. doi: 10.1023/A:1006669218545 CrossRefGoogle Scholar
  160. Tezkan B, Goldman M, Greinwald S, Hördt A, Müller I, Neubauer FM, Zacher G (1996) A joint application of radiomagnetotellurics and transient electromagnetics to the investigation of a waste deposit in Cologne (Germany). J Appl Geophys 34(3):199–212. doi: 10.1016/0926-9851(95)00016-X CrossRefGoogle Scholar
  161. Tezkan B, Hördt A, Gobashy M (2000) Two-dimensional radiomagnetotelluric investigation of industrial and domestic waste sites in Germany. J Appl Geophys 44(2–3):237–256. doi: 10.1016/S0926-9851(99)00014-2 CrossRefGoogle Scholar
  162. Tsourlos P, Vargemezis GN, Fikos I, Tsokas GN (2014) DC geoelectrical methods applied to landfill investigation: case studies from Greece. First Break 32(8):81–89Google Scholar
  163. Valois R, Galibert P-Y, Guerin R, Plagnes V (2016) Application of combined time-lapse seismic refraction and electrical resistivity tomography to the analysis of infiltration and dissolution processes in the epikarst of the Causse du Larzac (France). Near Surf Geophys 14(1):13–22. doi: 10.3997/1873-0604.2015052 Google Scholar
  164. Vargemezis G, Tsourlos P, Giannopoulos A, Trilyrakis P (2015) 3D electrical resistivity tomography technique for the investigation of a construction and demolition waste landfill site. Stud Geophys Geod 59(3):461–476. doi: 10.1007/s11200-014-0146-5 CrossRefGoogle Scholar
  165. Villain L, Sundström N, Perttu N, Alakangas L, Öhlander B (2011) Geophysical investigations to identify groundwater pathways at a small open-pit copper mine reclaimed by backfilling and sealing, pp 71–76Google Scholar
  166. Walther EG, Pitchford AM, Olhoeft GR (1986) A strategy for detecting subsurface organic contaminants. The petroleum hydrocarbons and organic chemicals in ground water, prevention, detection and restoration. National Water Well Association, Houston, TX, pp 357–381Google Scholar
  167. Wang T-P et al (2015) Applying FDEM, ERT and GPR at a site with soil contamination: a case study. J Appl Geophys 121:21–30. doi: 10.1016/j.jappgeo.2015.07.005 CrossRefGoogle Scholar
  168. Weigel M (1989) Self-potential surveys on waste dumps theory and practice. Detection of subsurface flow phenomena. Springer, Berlin, pp 109–120CrossRefGoogle Scholar
  169. Weller A, Frangos W, Seichter M (2000) Three-dimensional inversion of induced polarization data from simulated waste. J Appl Geophys 44(2–3):67–83. doi: 10.1016/S0926-9851(00)00007-0 CrossRefGoogle Scholar
  170. Whiteley RJ, Jewell C (1992) Geophysical techniques in contaminated lands assessment: do they deliver? Explor Geophys 23:557–565CrossRefGoogle Scholar
  171. Wijesekara HR, De Silva SN, Wijesundara DTDS, Basnayake BFA, Vithanage MS (2015) Leachate plume delineation and lithologic profiling using surface resistivity in an open municipal solid waste dumpsite, Sri Lanka. Environ Technol 36(23):2936–2943. doi: 10.1080/09593330.2014.963697 CrossRefGoogle Scholar
  172. Wijewardana YNS, Galagedara LW, Mowjood MIM, Kawamoto K (2015) Assessment of iInorganic pollutant contamination in groundwater using ground penetrating radar (GPR). Trop Agric Res 26(4):700. doi: 10.4038/tar.v26i4.8132 CrossRefGoogle Scholar
  173. Williams JHW, Lapham WW, Barringer TH (1993) Application of electromagnetic logging to contamination investigations in Glacial Sand-and-Gravel Aquifers. Ground Water Monit Remediat 13(3):129–138. doi: 10.1111/j.1745-6592.1993.tb00082.x CrossRefGoogle Scholar
  174. Yin K, Tong HH, Noh O, Wang J-Y, Giannis A (2015) Mapping refuse profile in Singapore old dumping ground through electrical resistivity, s-wave velocity and geotechnical monitoring. Bull Environ Contam Toxicol 94(3):275–281. doi: 10.1007/s00128-014-1427-y CrossRefGoogle Scholar
  175. Zacher G, Tezkan B, Neubauer FM, Hoerdt A, Mueller I (1996) Radio magnetotellurics: a powerful tool for waste-site exploration. Eur J Environ Eng Geophys 1:135–159Google Scholar
  176. Zekkos DP (2005) Evaluation of static and dynamic properties of municipal solid-waste. University of California at BerkeleyGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.Department of Environmental and Natural Resources EngineeringTechnological Educational Institute of CreteChaniaGreece
  2. 2.Department of Earth & Environmental SciencesRutgers UniversityNewarkUSA

Personalised recommendations