Skip to main content

Research on Bionic Mechanism of Shoulder Joint Rehabilitation Movement

  • Conference paper
  • First Online:
Wearable Sensors and Robots

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 399))

Abstract

In view of the clinical need of rehabilitation training to the human upper limb , the paper puts forward a novel exoskeleton device for shoulder rehabilitation. Based on the analysis of anatomy and biomechanics of shoulder joint , a novel bionic mechanism with 5° of freedom was proposed in the exoskeleton device. Then, the designs of mechanisms’ scheme and mechanical structure to bionic mechanism were performed successively. The bionic mechanism of shoulder joint was optimized to match the physiological motion of anatomical center of rotation adaptively and improves the compatibility of human-machine kinematic chain. It is expected that the research will provide a reference method to the study of bionic mechanism in rehabilitation training related to other joints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Burgar CG, Lum PS, Scremin AM et al (2011) Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: Department of Veterans Affairs multisite clinical trial. J Rehabil Res Dev 48(4):445–458. doi:10.1682/JRRD.2010.04.0062

    Article  Google Scholar 

  • Engin AE (1980) On the biomechanics of the shoulder complex. J Biomech 13(7):575–590. doi:10.1016/0021-9290(80)90058-5

    Article  Google Scholar 

  • Gopura RARC, Kazuo K (2009) Mechanical designs of active upper-limb exoskeleton robots: state-of-the-art and design difficulties. In: IEEE International conference on rehabilitation robotics, pp 178–187. doi:10.1109/ICORR.2009.209630

  • Hillman SK (2009) Interactive functional anatomy. J. Physiotherapy, New Zealand

    Google Scholar 

  • Hsieh YW, Wu CY, Liao WW et al (2011) Effects of treatment intensity in upper limb robot-assisted therapy for chronic stroke: a pilot randomized controlled trial. J Neurorehabil Neural Repair 25(6):503–511. doi:10.1177/1545968310394871

    Article  Google Scholar 

  • Kapandji AI (2011) The physiology of the joints: the upper limb. People’s Military Medical Press, Beijing, China, pp 22–74

    Google Scholar 

  • Kiguchi K, Kado K, Hayashi Y (2011) Design of a 7DOF upper-limb power-assist exoskeleton robot with moving shoulder joint mechanism. In: Proceedings of IEEE international conference on robotics and biomimetics, pp 2937–2942. doi:10.1109/ROBIO.2011.6181752

  • Krebs HI, Hogan N, Volpe BT et al (1999) Overview of clinical trials with MIT-MANUS: a robot-aided neuro-rehabilitation facility. J Technol Health Care 7(6):419–423

    Google Scholar 

  • Lew E, Chavarriaga R, Silvoni S et al (2012) Detection of self-paced reaching movement intention from EEG signals. J Front Neuroeng 5(13):2012. doi:10.3389/fneng.2012.00013

    Google Scholar 

  • Liao WW, Wu CY, Hsieh YW et al (2012) Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke: a randomized controlled trial. J Clin Rehabil 26(2):111–120. doi:10.1177/0269215511416383

    Article  Google Scholar 

  • Martini FH, Timmons MJ, Tallitsch RB (2003) Human anatomy. Prentice Hall, Pearson Education Inc (Chap. 8)

    Google Scholar 

  • Masiero S, Carraro E, Ferraro C et al (2009) Upper limb rehabilitation robotics after stroke: a perspective from the University of Padua, Italy. J Rehabil Med 41(12):981–985. doi:10.2340/16501977-0404

    Article  Google Scholar 

  • Masiero S, Armani M, Rosati G (2011) Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: focused review and results of new randomized controlled trial. J Rehabil Res Dev 48(4):355–366. doi:10.1682/JRRD.2010.04.0063

    Article  Google Scholar 

  • Mazzoleni S, Crecchi R, Posteraro F et al (2013) Robot-assisted upper limb rehabilitation in chronic stroke patients. In: IEEE engineering in medicine and biology society, pp 886–889. doi:10.1109/EMBC.2013.6609643

  • McCormick EJ (1970) Human factors engineering, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Mihelj M, Nef T, Riener R (2007) ARMin II-7 DoF rehabilitation robot: mechanics and kinematics. In: IEEE International conference on robotics and automation, pp 4120–4125. doi:10.1109/ROBOT.2007.364112

  • Pellegrino G, Tomasevic L, Tombini M et al (2012) Inter-hemispheric coupling changes associate with motor improvements after robotic stroke rehabilitation. J Restor Neurol Neurosci 30(6):497–510. doi:10.3233/RNN-2012-120227

    Google Scholar 

  • Rahman MH, Saad M, Kenne JP et al (2009) Modeling and control of a 7DOF exoskeleton robot for arm movements. In: Proceedings of IEEE international conference on robotics and biomimetics, pp 245–250. doi:10.1109/ROBIO.2009.5420646

  • Stienen AHA, Hekman EEG, van der Helm FCT et al (2007) Freebal: dedicated gravity compensation for the upper extremities. In: IEEE international conference on rehabilitation robotics, pp 804–808. doi:10.1109/ICORR.2007.4428517

  • Van VP, Pelton TA, Hollands KL et al (2013) Neuroscience findings on coordination of reaching to grasp an object: implications for research. J Neurorehabil Neural Repair 27(7):622–635. doi:10.1177/1545968313483578

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-xin Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Zhejiang University Press and Springer Science+Business Media Singapore

About this paper

Cite this paper

Pan, Gx., Fu, Hq., Zhang, Xf., Ma, Fl. (2017). Research on Bionic Mechanism of Shoulder Joint Rehabilitation Movement. In: Yang, C., Virk, G., Yang, H. (eds) Wearable Sensors and Robots. Lecture Notes in Electrical Engineering, vol 399. Springer, Singapore. https://doi.org/10.1007/978-981-10-2404-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2404-7_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2403-0

  • Online ISBN: 978-981-10-2404-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics