Skip to main content

Human Gait Trajectory Learning Using Online Gaussian Process for Assistive Lower Limb Exoskeleton

  • Conference paper
  • First Online:
Book cover Wearable Sensors and Robots

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 399))

Abstract

Human gait trajectory estimating and acquiring using human--robot interaction (HRI) is the most crucial issue for an assistive lower limb exoskeleton. The relationship between the HRI and the human gait trajectory is nonlinear, which is difficult to be obtained due to the complex dynamics parameters and physical properties of mechanism and human legs. A Gaussian process (GP) is an excellent algorithm for learning nonlinear approximation, as it is suitable for small-scale dataset. In this paper, an online sparse Gaussian process is proposed to learn the human gait trajectory, i.e., the increment of angular position of knee joints, where the input is the HRI signal and the output is the increment of angular position of knee joints. We collect the HRI signals and the actual angular position by using torque sensors and optical encoders, respectively. When collecting dataset, the subjects are required to wear the exoskeleton without actuation system and walks freely as far as possible. After purifying the dataset, a subspace of training set with appropriate dimensionality is chosen. The subspace will be regarded as the training dataset and is applied in the online sparse GP regression. A position control strategy, i.e., proportion- integration-differentiation (PID), is designed to drive the exoskeleton robot to track the learned human gait trajectory. Finally, an experiment is performed on a subject who walks on the floor wearing the exoskeleton actuated by a hydraulic system at a natural speed. The experiment results show that the proposed algorithm is able to acquire the human gait trajectory by using the physical HRI and the designed control strategy can ensure the exoskeleton system shadow the human gait trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarno D, Kragic D (2008) Motion intention recognition in robot assisted applications. Robot Auton Syst 56(8):692–705. doi:10.1016/j.robot.2007.11.005

  • Andrew C (2005) Design of the Berkley lower extremity exoskeleton(BLEEX). University of California, Berkeley

    Google Scholar 

  • Aznar F, Pujol FA, Pujol M et al. (2009) Using Gaussian processes in Bayesian robot programming. In: Distributed computing, artificial intelligence, bioinformatics, soft computing, and ambient assisted living. Springer, Berlin, Heidelberg, pp 547–553. doi:10.1007/978-3-642-02481-8_79

  • Boyle P, Frean M (2004) Dependent Gaussian processes. In: Advances in neural information processing systems, pp 217–224

    Google Scholar 

  • Chandrapal M, Chen XQ, Wang W et al (2013) Preliminary evaluation of intelligent intention estimation algorithms for an actuated lower-limb exoskeleton. Int J Adv Rob Syst 10:1–10

    Article  Google Scholar 

  • Cheng CA, Huang TH, Huang HP (2013) Bayesian human intention estimator for exoskeleton system. In: IEEE/ASME international conference on advanced intelligent mechatronics (AIM), pp 465–470. doi:10.1109/AIM.2013.6584135

  • Ge SS, Li Y, He H (2011) Neural-network-based human intention estimation for physical human-robot interaction. In: 8th International conference on ubiquitous robots and ambient intelligence (URAI), pp 390–395. doi:10.1109/URAI.2011.6145849

  • He H, Kiguchi K (2007) A study on emg-based control of exoskeleton robots for human lower-limb motion assist. In: 6th International special topic conference on information technology applications in biomedicine, pp 292–295. doi:10.1109/ITAB.2007.4407405

  • Kawamoto H, Lee S, Kanbe S et al (2003) Power assist method for HAL-3 using EMG-based feedback controller. In: Proceeding of IEEE international conference on systems, man and cybernetics, 2:1648–1653. doi:10.1109/ICSMC.2003.1244649

  • Kazerooni H, Racine JL, Huang L et al (2005) On the control of the Berkeley lower extremity exoskeleton (BLEEX). In: Proceeding of IEEE international conference on robotics and automation, pp 4353–4360. doi:10.1109/ROBOT.2005.1570790

  • Kazerooni H, Steger R, Huang L (2006) Hybrid control of the Berkeley lower extremity exoskeleton (bleex). Int J Robot Res 25(5–6):561–573. doi:10.1177/02783649060655

    Article  Google Scholar 

  • Kiguchi K, Imada Y (2009) EMG-based control for lower-limb power-assist exoskeletons. In: IEEE Workshop on robotic intelligence in informationally structured space, pp 19–24. doi:10.1109/RIISS.2009.4937901

  • Kou P, Gao F (2014) Sparse Gaussian process regression model based on ℓ 1/2 regularization. Appl Intell 40(4):669–681. doi:10.1007/s10489-013-0482-0

    Article  Google Scholar 

  • Lawrence N, Seeger M, Herbrich R (2003) Fast sparse Gaussian process methods: the informative vector machine. In: Proceedings of the 16th annual conference on neural information processing systems (EPFL-CONF-161319):609–616

    Google Scholar 

  • Lee H, Kim W, Han J et al (2012) The technical trend of the exoskeleton robot system for human power assistance. Int J Precis Eng Manuf 13(8):1491–1497. doi:10.1007/s12541-012-0197-x

    Article  Google Scholar 

  • Lewis FW, Jagannathan S, Yesildirak A (1998) Neural network control of robot manipulators and non-linear systems. CRC Press

    Google Scholar 

  • Li Y, Ge SS (2014) Human–robot collaboration based on motion intention estimation. IEEE/ASME Trans Mechatron 19(3):1007–1014. doi:10.1109/TMECH.2013.2264533

  • Li J, Qu Y, Li C et al (2015) Learning local Gaussian process regression for image super-resolution. Neurocomputing 154(284–295):2014. doi:10.1016/j.neucom.11.064

    Google Scholar 

  • Nguyen-Tuong D, Peters J (2008) Local gaussian process regression for real-time model-based robot control. In: IEEE/RSJ International conference on intelligent robots and systems, pp 380–385. doi:10.1109/IROS.2008.4650850

  • Park S, Mustafa SK, Shimada K (2013) Learning based robot control with sequential Gaussian process. In: IEEE Workshop on robotic intelligence in informationally structured space (RIISS), pp 120–127. doi:10.1109/RiiSS.2013.6607939

  • Quiñonero-Candela J, Rasmussen CE (2005) A unifying view of sparse approximate Gaussian process regression. J Mach Learn Res 6:1939–1959

    MathSciNet  MATH  Google Scholar 

  • Ranganathan A, Yang MH, Ho J (2011) Online sparse Gaussian process regression and its applications. IEEE Trans Image Process 20(2):391–404. doi:10.1109/TIP.2010.2066984

    Article  MathSciNet  Google Scholar 

  • Rasmussen CE, Ghahramani Z (2002) Infinite mixtures of Gaussian process experts. Adv Neural Inform Process Syst 2:881–888

    Article  Google Scholar 

  • Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. MIT Press, Cambridge

    MATH  Google Scholar 

  • Sankai Y (2011) HAL: Hybrid assistive limb based on cybernics. In: Robotics research. Springer Berlin Heidelberg, pp 25–34. doi:10.1007/978-3-642-14743-2_3

  • Satoh H, Kawabata T, Sankai Y (2009) Bathing care assistance with robot suit HAL. In: Proceeding of IEEE international conference on robotics and biomimetics (ROBIO), pp 498–503. doi:10.1109/ROBIO.2009.5420697

  • Seeger M (2004) Gaussian processes for machine learning. Int J Neural Syst 14:69–106. doi:10.1142/S0129065704001899

    Article  Google Scholar 

  • Steger R, Kim SH, Kazerooni H (2006) Control scheme and networked control architecture for the Berkeley lower extremity exoskeleton (BLEEX). In: Proceeding of IEEE international conference on robotics and automation, pp 3469–3476. doi:10.1109/ROBOT.2006.1642232

  • Titsias MK (2009) Variational learning of inducing variables in sparse Gaussian processes. In: International conference on artificial intelligence and statistics, pp 567–574

    Google Scholar 

  • Tran H, Cheng H, Lin X et al (2014) The relationship between physical human-exoskeleton interaction and dynamic factors: using a learning approach for control applications. Sci China Inform Sci 57:1–13. doi:10.1007/s11432-014-5203-8

  • Kirtley C CGA Normative Gait Database. Available: http://www.clinicalgaitanalysis.com/data/

  • Young AJ, Kuiken TA, Hargrove LJ (2014) Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. J Neural Eng 11(5):056021. doi:10.1088/1741-2560/11/5/056021

    Article  Google Scholar 

  • Zhu J, Sun S (2014) Sparse Gaussian processes with manifold-preserving graph reduction. Neurocomputing 138:99–105. doi:10.1016/j.neucom.2014.02.039

    Article  Google Scholar 

  • Zoss AB, Kazerooni H, Chu A (2006) Biomechanical design of the Berkeley lower extremity exoskeleton(BLEEX). IEEE/ASME Trans Mechatron 11(2):128–138. doi:10.1109/TMECH.2006.871087

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Dong .

Editor information

Editors and Affiliations

Appendix A: Algorithm 1

Appendix A: Algorithm 1

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Zhejiang University Press and Springer Science+Business Media Singapore

About this paper

Cite this paper

Long, Y., Du, Zj., Dong, W., Wang, Wd. (2017). Human Gait Trajectory Learning Using Online Gaussian Process for Assistive Lower Limb Exoskeleton. In: Yang, C., Virk, G., Yang, H. (eds) Wearable Sensors and Robots. Lecture Notes in Electrical Engineering, vol 399. Springer, Singapore. https://doi.org/10.1007/978-981-10-2404-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2404-7_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2403-0

  • Online ISBN: 978-981-10-2404-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics