Skip to main content

An Adaptive Finite-Time Consensus Control for Higher-Order Nonlinear Multi-agent Systems

  • Chapter
  • First Online:
Book cover Applications of Sliding Mode Control

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 79))

  • 1872 Accesses

Abstract

This chapter presents a finite-time consensus problem of higher-order nonlinear multi-agent systems (MAS) in the presence of bounded disturbances. The nominal control is designed by homogeneous finite-time technique to track the desired target trajectories. The chattering is mitigated by designing an integral sliding surface using adaptive super twisting algorithm (STA). The design parameters of super twisting controller are estimated adaptively without knowing the bounds a priori. The finite time convergence of the consensus protocol for the higher-order MAS is presented using Lyapunov analysis. Simulation results shows the effectiveness of the proposed homogeneous adaptive sliding mode control for the MAS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bhat, S. P., & Bernstein, D. S. (2005). Geometric homogeneity with applications to finite-time stability. Mathematics of Control Signals Systems, 17, 101–127.

    Article  MathSciNet  MATH  Google Scholar 

  • Canale, E., Dalmao, F., Mordecki, E., & Souza, M. O. (2015). Robustness of cucker-smale flocking model. IET Control Theory and Applications, 9(3), 346–350.

    Article  MathSciNet  Google Scholar 

  • Cao, Y., Yu, W., Ren, W., & Chen, G. (2013). An overview of recent progress in the study of distributed multi-agent. An Overview of Recent Progress in the Study of Distributed Multi-agent, 9(1), 427–438.

    Google Scholar 

  • Consolini, L., Morbidi, F., & Tosques, D. P. M. (2008). Leaderfollower formation control of nonholonomic mobile robots with input constraints. Automatica, 44(5), 1343–1349.

    Article  MathSciNet  MATH  Google Scholar 

  • Defoort, M., Floquet, T., Kokosy, A., & Perruquetti, W. (2009). A novel higher order sliding mode control scheme. System and Control Letters, 58, 102–108.

    Article  MathSciNet  MATH  Google Scholar 

  • Dimarogonas, D. V., Tsiotras, P., & Kyriakopoulos, K. J. (2009). Leader-follower cooperative attitude control of multiple rigid bodies. Systems and Control Letters, 58, 429–435.

    Google Scholar 

  • Feng, Y., Han, F., & Yu, X. (2014). Chattering free full-order sliding-mode control. Automatica, 50, 1310–1314.

    Article  MathSciNet  MATH  Google Scholar 

  • Ghasemi, M., & Nersesov, S. G. (2014). Finite-time coordination in multiagent systems using sliding mode control approach. Automatica, 50, 1209–1216.

    Article  MathSciNet  MATH  Google Scholar 

  • Ghasemi, M., Nersesov, S. G., Clayton, G., & Ashrafiuon, H. (2014a). Sliding mode coordination control for multiagent systems with underactuated agent dynamics. International Journal of Control, 87(12), 2612–2633.

    Article  MathSciNet  MATH  Google Scholar 

  • Ghasemi, M., Nersesovn, S. G., & Clayton, G. (2014b). Finite-time tracking using sliding mode control. Journal of the Franklin Institute, 351(5), 2966–2990.

    Google Scholar 

  • Ghommam, J., Mehrjerdi, H., & Saad, M. (2013). Robust formation control without velocity measurement of the leader robot. Control Engineering Practice, 21, 1143–1156.

    Article  Google Scholar 

  • Ghommam, J., & Saad, M. (2014). Backstepping-based coop- erative and adaptive tracking control design for a group of underactuated AUVs in horizontal plan. International Journal of Control, 87(5), 1076–1093.

    Article  MathSciNet  MATH  Google Scholar 

  • Guo, W., Lü, J., Chen, S., & Yu, X. (2011). Second-order tracking control for leader-follower multi-agent flocking in directed graphs with switching topology. Systems and Control Letters, 60, 1051–1058.

    Google Scholar 

  • He, X., Wang, Q., & Yu, W. (2014). Finite-time containment control for second-order multiagent systems under directed topology. IEEE Transactions on Circuit and Systems-II, 61(8), 619–623.

    Article  Google Scholar 

  • Hong, Y., Gao, L., Cheng, D., & Hu, J. (2007). Lyapunov-based approach to multiagent systems with switching jointly connected interconnection. IEEE Transactions on Automatic Control, 52(5), 943–948.

    Article  MathSciNet  Google Scholar 

  • Khoo, S., Xie, L., & Man, Z. (2009). Robust finite-time consensus tracking algorithm for multirobot systems. IEEE/ASME Transactions on Mechatronics, 14(2), 219–228.

    Article  Google Scholar 

  • Levant, A. (1993). Sliding order and sliding accuracy in sliding mode control. International Journal of Control, 58(6), 1247–1263.

    Article  MathSciNet  MATH  Google Scholar 

  • Levant, A. (2001). Universal single-input single-output (SISO) sliding-mode controllers with finite-time convergence. IEEE Transactions on Automatic Control, 46(1), 1447–1451.

    Article  MathSciNet  MATH  Google Scholar 

  • Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control, 76(9/10), 924–941.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, T., & Zhang, J.-F. (2010). Consensus conditions of multi-agent systems with time-varying topologies and stochastic communication noises. IEEE Transactions on Automatic Control, 55(9), 2043–2057.

    Article  MathSciNet  Google Scholar 

  • Li, Z., Duan, Z., Chen, G., & Huang, L. (2010). Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint. IEEE Transactions on Circuits and Systems -I, 57(1), 213–224.

    Article  MathSciNet  Google Scholar 

  • Lin, P., & Jia, Y. (2009). Consensus of second-order discrete-time multiagent systems with nonuniform time-delays and dynamically changing topologies. Automatica, 45(9), 2154–2158.

    Article  MathSciNet  MATH  Google Scholar 

  • Mehrjerdi, H., Saad, M., & Ghommam, J. (2011). Hierarchical fuzzy cooperative control and path following for a team of mobile robots. IEEE/ASME Transactions on Mechatronics, 16(5), 907–917.

    Article  Google Scholar 

  • Moulay, E., & Perruquetti, W. (2008). Finite time stability conditions for non autonomous continuous systems. International Journal of Control, 81(5), 797–803.

    Article  MathSciNet  MATH  Google Scholar 

  • Pack, D. J., DeLima, P., Toussaint, G. J., & York, G. (2009). Cooperative control of UAVs for localization of intermittently emitting mobile targets. IEEE Transactions on Systems Man and Cybernatics-Part B: 39(4), 959–970.

    Google Scholar 

  • Rath, J., Veluvolu, K., & Defoort, M. (2015). Simultaneous estimation of road profile and tyre road friction for automotive vehicle. IEEE Transactions on Vehicular Technology, 64(10), 4461–4471.

    Google Scholar 

  • Ren, W., & Beard, R. W. (2005). Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, 50(5), 655–661.

    Article  MathSciNet  Google Scholar 

  • Shtessel, Y., Taleb, M., & Plestan, F. (2012). A novel adaptive-gain supertwisting sliding mode controller: Methodology and application. Automatica, 48(5), 759–769.

    Article  MathSciNet  MATH  Google Scholar 

  • Shtessel, Y. B., Moreno, J. A., Plestan, F., Fridman, L. M., and Poznyak, A. S. (2010). Super-twisting adaptive sliding mode control: A Lyapunov design. In 49th IEEE Conference on Decision and Control, Atlanta, USA, (pp. 5109–5113).

    Google Scholar 

  • Weigang, L., de Souza, B. B., Crespo, A. M. F., & Alves, D. P. (2008). Decision support system in tactical air traffic flow management for air traffic flow controllers. Journal of Air Transport Management, 14, 329–336.

    Article  Google Scholar 

  • Yoon, S., & Qiao, C. (2011). Cooperative search and survey using autonomous underwater vehicles (AUVs). IEEE Transactions on Parallel and Distributed Systems, 22(3), 364–379.

    Google Scholar 

  • Yu, S., & Long, X. (2015). Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode. Automatica, 54, 158–165.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, W. & Wang, Z. (2015). Adaptive output consensus tracking of uncertain multiagent systems. International Journal of Systems Science, 46(13), 2367–2379.

    Google Scholar 

  • Zhao, D., Zou, T., Li, S., & Zhu, Q. (2011). Adaptive backstepping sliding mode control for leader-follower multi-agent systems. IET Control Theory and Applications, 6(8), 1109–1117.

    Article  MathSciNet  Google Scholar 

  • Zuo, Z. (2015). Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica, 54, 305–309.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjoy Mondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Mondal, S., Ghommam, J., Saad, M. (2017). An Adaptive Finite-Time Consensus Control for Higher-Order Nonlinear Multi-agent Systems. In: Derbel, N., Ghommam, J., Zhu, Q. (eds) Applications of Sliding Mode Control. Studies in Systems, Decision and Control, vol 79. Springer, Singapore. https://doi.org/10.1007/978-981-10-2374-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2374-3_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2373-6

  • Online ISBN: 978-981-10-2374-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics