Skip to main content

The Grammar Lens: How Spatial Grammar Channels Interface Design

  • Chapter
  • First Online:
Book cover Morphological Analysis of Cultural DNA

Part of the book series: KAIST Research Series ((KAISTRS))

  • 538 Accesses

Abstract

The human information processing (HIPS) model predicts that people design by searching in a problem space, but the HIPS model alone provides insufficient guidance for system design. The eight generic tasks presented here elaborate the overall search task into sub-tasks that may be recombined in many different overall design processes. Supporting any such tasks and processes requires a notational system, for which the cognitive dimensions framework provides an analytic structure. Cognitive dimensions analysis requires descriptions of the activity undertaken, the notation used and the environment providing the notation and supporting the activity. We split the notation into two parts, one for design states and one for the design space. In addition we posit the notion of an interaction metaphor or lens that channels system (environment) designs in specific channels. We describe 25 grammar-based systems in cognitive dimensions terms, analyze them for their support of the eight generic exploration tasks and present a cognitive dimensions analysis for one conventional grammar-based system. The grammar lens for design exploration system appears to strongly channel system designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, M., & Cagan, J. (1998). A blend of different tastes: The language of coffeemakers. Environment and Planning B: Planning and Design, 25(2), 205–226.

    Article  Google Scholar 

  2. Agarwal, M., Cagan, J., & Stiny, G. (2000). A micro language: Generating mems resonators by using a coupled form-function shape grammar. Environment and Planning B, 27(4), 615–626.

    Article  Google Scholar 

  3. Akin, O. (1986). The psychology of archtitectural design. London: Pion.

    Google Scholar 

  4. Akin, O. (2001). Variants in design cognition. In C. M. Eastman, W. M. McCracken, & W. C. Newstetter (Eds.), Design knowing and learning: Cognition in design education (pp. 105–124). Oxford: Elsevier.

    Chapter  Google Scholar 

  5. Akin, O. (2006). The whittled design space. AI EDAM, 20, 83–88.

    Google Scholar 

  6. Akin, O., Aygen, Z., Chang, T.-W., Chien, S.-F., Choi, B., Donia, M., et al. (1997). SEED: A software environment to support the Early phases of building Design. The International Journal of Design Computing. http://www.arch.usyd.edu.au/kcdc/journal/index.html

  7. Archea, J. (1987). Puzzle-making: What architects do when no one is looking. In Y. Kalay (Ed.), Computability of design, principles of computer-aided design (pp. 37–52). New York, NY: Wiley.

    Google Scholar 

  8. Autodesk. (2005). Project dreamcatcher. Accessed at http://autodeskresearch.com/projects/dreamcatcher on November 13, 2015.

  9. Blackwell, A., & Green, T. (2003). Notational systems—the cognitive dimensions of notations framework. In J. M. Carroll (Ed.), HCI models, theories, and frameworks: Toward an interdisciplinary science (pp. 103–134). Burlington: Morgan Kaufmann.

    Google Scholar 

  10. Blackwell, A. F., Britton, C., Cox, A., Green, T. R., Gurr, C., Kadoda, G., et al. (2001). Cognitive dimensions of notations: Design tools for cognitive technology. In Cognitive technology: Instruments of mind (pp. 325–341). Berlin: Springer.

    Google Scholar 

  11. Bradner, E., Iorio, F., & Davis, M. (2014). Parameters tell the design story: Ideation and abstraction in design optimization. In D. D. Gerber & R. Goldstein (Eds.), Symposium on Simulation for Architecture and Urban Design (pp. 77–84). The Society for Modeling and Simulation International.

    Google Scholar 

  12. Brown, K. (1997). Grammatical design. IEEE Expert, 12(2), 27–33.

    Article  Google Scholar 

  13. Bruton, D. (1997). A contingent sense of grammar. PhD thesis, Adelaide University.

    Google Scholar 

  14. Bruton, D., & Radford, A. (2012). Digital design: A critical introduction/Dean Bruton and Antony Radford. London: Berg Publishers. (english edition).

    Google Scholar 

  15. Burrow, A., & Woodbury, R. (1999). π-resolution in design space exploration. In G. Augenbroe & C. Eastman (Eds.), Computers in Building: Proceedings of the CAADFutures’99 Conference, Atlanta, Georgia (pp. 291–308). Boston: Kluwer Academic Publishers.

    Google Scholar 

  16. Buxton, B. (2010). Sketching user experiences: Getting the design right and the right design: Getting the design right and the right design. Burlington: Morgan Kaufmann.

    Google Scholar 

  17. Carlson, C. (1993). An algebraic approach to the description of design spaces. PhD thesis, Department of Architecture, Carnegie Mellon University.

    Google Scholar 

  18. Carlson, C., McKelvey, R., & Woodbury, R. (1991). An introduction to structure and structure grammars. Planning and Design, 18, 417–426. (An earlier version of this paper was published as EDRC 48-28-90).

    Google Scholar 

  19. Carlson, C., & Woodbury, R. (1994). Hands-on exploration of recursive patterns. Languages of Design, 2, 121–142.

    Google Scholar 

  20. Chandrasekaran, B. (1990). Design problem solving: A task analysis. AI magazine, 11(4), 59.

    Google Scholar 

  21. Chase, S. (1989). Shapes and shape grammars: From mathematical model to computer implementation. Planning and Design, 16(2), 215–241.

    Article  Google Scholar 

  22. Chase, S. C. (2002). A model for user interaction in grammar-based design systems. Automation in Construction, 11(2), 161–172.

    Article  Google Scholar 

  23. Chien, S.-F., Donia, M., Snyder, J., & Tsai, W.-J. (1998). Sg-clips: A system to support the automatic generation of design from grammars. In Y.-T. Liu, J.-Y. Tsou, & J.-H. H (Eds.), CAADRIA 98 (vol. 3). Osaka, Japan: Computer Aided Architectural Design Research in Asia.

    Google Scholar 

  24. Chiou, S., & Krishnamurti, R. (1995). The grammar of taiwanese traditional vernacular dwellings. Environment and Planning B, 22, 689–720.

    Article  Google Scholar 

  25. Chiou, S., & Krishnamurti, R. (1995). The grammatical basis of chinese traditional architecture. Languages of Design, 3, 5–31.

    Google Scholar 

  26. Chiou, S.-C., & Krishnamurti, R. (1996). Example taiwnaese traditional houses. Enviornment and Planning B: Planning and Design, 23, 191–216. (The derivations of Four Taiwanese traditional vernacular houses, based on a shape grammar, are illustrated. This papers discussed hte role of grammars in describing design style, using the Taiwanese houses as examplars).

    Google Scholar 

  27. Chomsky, N. (1959). On certain formal properties of grammars. Information and Control, 2(2), 137–167.

    Article  Google Scholar 

  28. Coyne, R., Rosenman, M. A., Radford, A. D., Balachandran, M., & Gero, J. S. (1989). Knowledge-based design systems. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

    Google Scholar 

  29. Cross, N. (2006). Designerly ways of knowing.

    Google Scholar 

  30. Cross, N. (2008). Engineering design methods: Strategies for product design. New York: Wiley.

    Google Scholar 

  31. Cross, N. (2011). Design thinking: Understanding how designers think and work. Oxford: Berg Pub Ltd.

    Google Scholar 

  32. Datta, S. (2006). Modeling dialogue with mixed initiative in design space exploration. AI EDAM, 20(2), 129–142.

    Google Scholar 

  33. Datta, S., Chang, T.-W., & Woodbury, R. F. (1997). Describing temple cellas in SEED-Config. In Y.-T. Liu, J.-Y. Tsou, J.-H. H (Eds.), CAADRIA 97, Hsinchu, Taiwan (Vol. 2, pp. 367–376). Computer Aided Architecture Design Research in Asia, National Chia Tung University. ISBN 957-575-057-8.

    Google Scholar 

  34. Datta, S., & Woodbury, R. F. (2002). A graphical notation for mixed-initiative dialogue in generative design systems. In J. Gero (Ed.), Artificial intelligence in design (AID) ‘02, Dordecht, Netherlands (pp. 25–40). Boston: Kluwer Academic Publishers, Cambridge University.

    Google Scholar 

  35. Dennett, D. C. (1987). The intentional stance. Cambridge: MIT Press.

    Google Scholar 

  36. Downing, F., & Flemming, U. (1981). The bungalows of buffalo. Environment and Planning B: Planning and Design, 8, 269–293.

    Article  Google Scholar 

  37. Drewes, F., Habal, A., Kreowski, H. J., & Taubenberger, S. (1995). Generating self-affine fractals by collage grammars. Journal of Magagement information system, 145, 159–187. (Self-affinity and self-similarity are realted to collage grammars—syntatic devices based on hyperedge replacement that generates sets of collages).

    Google Scholar 

  38. Duarte, J., & Simondetti, A. (1997). Basic grammars and rapid prototyping. In Applications of artificial intelligence in structural engineering, Tampere, Finland.

    Google Scholar 

  39. Duarte, J. P., Rocha, J. M., & Ducla-Soares, G. (2007). Unveiling the structure of the marrakech medina: A shape grammar and an interpreter for generating urban form. AI EDAM, 21(4), 317–349.

    Google Scholar 

  40. Eastman, C., Newstatter, W., & McCracken, M. (2001). Design cognition: Results from protocol and other empirical studies of design activity. In N. Cross (Eds.), Design knowing and learning: Cognition in design education (p.79103). Amsterdam: Elsevier.

    Google Scholar 

  41. Eastman, C. M. (1969). Cognitive processes and ill-defined problems: A case study from design. In Proceedings of the International Joint Conference on Artificial Intelligence: IJCAI (Vol. 69, pp. 669–690).

    Google Scholar 

  42. Eastman, C. M. (1970). Representations for space planning. Communications of the ACM, 13(4), 242–250.

    Article  Google Scholar 

  43. Eastman, C. M. (1972). Preliminary report on a system for general space planning. Communications of the ACM, 15(2), 76–87.

    Article  Google Scholar 

  44. Eastman, C. M. (1973). Automated space planning. Artificial Intelligence, 4(1), 41–64.

    Article  Google Scholar 

  45. Ertelt, C., & Shea, K. (2009). An application of shape grammars to planning for cnc machining. In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (pp. 651–660). New York: American Society of Mechanical Engineers.

    Google Scholar 

  46. Fenves, S. J., & Baker, N. C. (1988). Grammars for functional and spatial reasoning in design. In 5th Conference on Computers in Civil Engineering: Microcomputers to Supercomputers, Alexandria, Virginia (pp. 819–828). New York: American Society of Civil Engineers.

    Google Scholar 

  47. Fitzhorn, P. (1987). A linguistic formalism for solid modeling. Graph-grammars and their application to computer science (pp. 202–215)., Lecture notes in computer science Berlin: Springer.

    Chapter  Google Scholar 

  48. Flasiski, M. (1995). Use of graph grammars for the description of mechanical parts. Computer-Aided Design, 27(6), 403–433.

    Article  Google Scholar 

  49. Flemming, U. (1978). Wall representations of rectangular dissections and their use in automated space allocation. Environment and Planning B: Planning and Design, 5, 215–232.

    Article  Google Scholar 

  50. Flemming, U. (1980). Wall representations of rectangular dissections: Additional results. Environment and Planning B: Planning and Design, 7, 247–251.

    Article  Google Scholar 

  51. Flemming, U. (1981). The secret of the casa giuliani frigerio. Environment and Planning B: Planning and Design, 8(1), 87–96.

    Article  Google Scholar 

  52. Flemming, U. (1986). On the representation and generation of loosely-packed arrangements of rectangles. Environment and Planning B: Planning and Design, 13, 189–205.

    Article  Google Scholar 

  53. Flemming, U. (1987a). More than the sum of parts: The grammar of queen anne houses. Environment and Planning B: Planning and Design, 14, 323–350.

    Article  Google Scholar 

  54. Flemming, U. (1987b). The role of shape grammars in the analysis and creation of designs. In Y. Kalay (Ed.), Computability of design, principles of computer-aided design (pp. 245–272). New York, NY: Wiley Interscience.

    Google Scholar 

  55. Flemming, U. (1989). More on the representation and generation of loosely packed arrangements of rectangles. Environment and Planning B: Planning and Design, 16, 327–359.

    Article  Google Scholar 

  56. Flemming, U. (1990). Knowledge representation and acquisition in the loos system. Building and Environment, 25(3), 209–219.

    Article  Google Scholar 

  57. Flemming, U. (2006). Yes, and by the way whither design space? AI EDAM, 20, 89–94.

    Google Scholar 

  58. Flemming, U., Baykan, C., Coyne, R., & Fox, M. (1992). Hierarchical generate-and-test vs. constraint directed search: A comparison in the context of layout synthesis. In J. Gero & F. Sudweeks (Eds.), Artificial Intelligence in Design ‘92, Dordrecht, The Netherlands (pp. 817–838). Boston: Kluwer Academic Publishers.

    Google Scholar 

  59. Flemming, U., & Chien, S.-F. (1995). Schematic layout design in the SEED environment. ASCE Journal of Architectural Engineering, 1(4), 162–169.

    Article  Google Scholar 

  60. Flemming, U., Coyne, R., Glavin, T., & Rychener, M. (1988). A generative expert system for the design of building layouts—version 2. In J. Gero (Ed.), Artificial Intelligence in Engineering: Design (pp. 445–464). New York, NY: Elsevier.

    Google Scholar 

  61. Flemming, U., Gindroz, R., Coyne, R., & Pithavadian, S. (1985). A pattern book for shadyside. Technical Report, Department of Architecture, Carnegie Mellon University.

    Google Scholar 

  62. Friedell, M., & Kochhar, S. (1991). Design and modeling with schema grammars. Visual Languages and Computing, 2, 247–273.

    Google Scholar 

  63. Gerber, D. J., & Lin, S.-H. E. (2012). Synthesizing design performance: An evolutionary approach to multidisciplinary design search. In 32nd Annual Conference of the Association for Computer Aided Design in Architecture, San Francisco, CA, USA (pp. 67–75).

    Google Scholar 

  64. Gips, J. (1975). Shape grammars and their uses. Interdisciplinary systems research. Basel: Birkhauser Verlag.

    Google Scholar 

  65. Goldschmidt, G. (2006). Quo vadis, design space explorer? AI EDAM, 20, 105–111.

    Google Scholar 

  66. Grabska, E. (1994). Graphs and designing. In H. Schneider & H. Ehrig (Eds.), Graph transformations in computer science (Vol. 776, pp. 188–202)., Lecture notes in computer science Berlin: Springer.

    Chapter  Google Scholar 

  67. Grasl, T., & Economou, A. (2011). Grape: Using graph grammars to implement shape grammars. In Proceedings of the 2011 Symposium on Simulation for Architecture and Urban Design, SimAUD ‘11, San Diego, CA, USA (pp. 21–28). Society for Computer Simulation International.

    Google Scholar 

  68. Green, T. (1989). Cognitive dimensions of notations. People and computers V, 443–460.

    Google Scholar 

  69. Green, T., Blandford, A., Church, L., Roast, C., & Clarke, S. (2006). Cognitive dimensions: Achievements, new directions, and open questions. Journal of Visual Languages & Computing, 17(4), 328–365.

    Google Scholar 

  70. Green, T. R. G. (2000). Instructions and descriptions: Some cognitive aspects of programming and similar activities. In Proceedings of the Working Conference on Advanced Visual Interfaces, AVI ‘00, New York, NY, USA (pp. 21–28). ACM.

    Google Scholar 

  71. Green, T. R. G., & Petre, M. (1996). Usability analysis of visual programming environments: A ‘cognitive dimensions’ framework. Journal of Visual Languages & Computing, 7(2), 131–174.

    Article  Google Scholar 

  72. Habel, A., & Kreowski, H.-J. (1991). Collage grammars. In Graph grammars and their application to computer science (pp. 411–429). Berlin: Springer.

    Google Scholar 

  73. Harada, M. (1997). Discrete/continuous design exploration by direct manipulation. PhD thesis, Carnegie Mellon University.

    Google Scholar 

  74. Harada, M., Witkin, A., & Baraff, D. (1995). Interactive physically-based manipulation of discrete/continuous models. In SIGGRAPH ‘95 Conference Proceedings (Vol. 29, pp. 199–208). ACM Siggraph, ACM.

    Google Scholar 

  75. Heisserman, J. (1991). Generative geometric design and boundary solid grammars. PhD thesis, Department of Architecture, Carnegie Mellon University.

    Google Scholar 

  76. Heisserman, J. (1994). Generative geometric design. IEEE Computer Graphics and Applications, 14(2), 37–45.

    Article  Google Scholar 

  77. Heisserman, J., Callahan, S., & Mattikalli, R. (2000). A design representation to support automated design generation. In Artificial Intelligence in Design (pp. 545–566). Berlin: Springer.

    Google Scholar 

  78. Heisserman, J., & Woodbury, R. (1993). Generating languages of solid models. In Proceedings of Second ACM/IEEE Symposium on Solid Modeling and Applications (pp. 103–112).

    Google Scholar 

  79. Heuer, R. J. (1999). Psychology of intelligence analysis. Lulu. com.

    Google Scholar 

  80. Hoisl, F., & Shea, K. (2011). An interactive, visual approach to developing and applying parametric three-dimensional spatial grammars. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 25(4), 333–356.

    Article  Google Scholar 

  81. Hollan, J., Hutchins, E., & Kirsh, D. (2000). Distributed cognition: Toward a new foundation for human-computer interaction research. ACM Transactions on Computer-Human Interactions, 7(2), 174–196.

    Google Scholar 

  82. Hutchins, E. (1995). Cognition in the wild. Cambridge: MIT Press.

    Google Scholar 

  83. Jones, S. P., Blackwellgram, A., & Burnett, M. (2003). A user-centred approach to functions in excel. SIGPLAN Not, 38(9), 165–176.

    Article  Google Scholar 

  84. Jowers, I., & Earl, C. (2011). Implementation of curved shape grammars. Environment and Planning B: Planning and Design, 38(4), 616–635.

    Article  Google Scholar 

  85. Jowers, I., Hogg, D. C., McKay, A., Chau, H. H., & De Pennington, A. (2010). Shape detection with vision: Implementing shape grammars in conceptual design. Research in Engineering Design, 21(4), 235–247.

    Article  Google Scholar 

  86. Kirsch, J., & Kirsch, R. (1986). The structure of paintings: Formal grammar and design. Planning and Design, 13(2), 163–176.

    Article  Google Scholar 

  87. Knight, T. (1981). The forty-one steps. Environment and Planning B: Planning and Design, 8, 97–114.

    Article  Google Scholar 

  88. Knight, T. (1988). Comparing designs. Planning and Design, 15(1), 73–110.

    Article  Google Scholar 

  89. Knight, T. (1989). Transformations of de stijl art: The paintings of georges vantongerloo and fritz glarner. Environment and Planning B: Planning and Design, 16(1), 51–98.

    Article  Google Scholar 

  90. Knight, T. (1992). Designing with grammars. In G. Schmitt (Ed.), Computer-aided architectural design (pp. 33–48). Verlag Viewag: CAAD Futures.

    Google Scholar 

  91. Knight, T. (1994). Shape grammars and color grammars in design. epdpd, 21, 705–735.

    Google Scholar 

  92. Knight, T. W. (1986). Transformations of the meander motif on greek geometric pottery. Design Computing, 1(1).

    Google Scholar 

  93. Konig, H., & Eizenberg, J. (1981). The language of the prairie: Frank lloyd wright’s prairie houses. Environment and Planning B: Planning and Design, 8, 295–323.

    Article  Google Scholar 

  94. Krishnamurti, R. (1982). SGI: An interpreter for shape grammars. Technical Report, Centre for Configurational Studies, Design Discipline, The Open University, Milton Keynes, MK7 6AA, U.K.

    Google Scholar 

  95. Krishnamurti, R. (2006). Explicit design space? AI EDAM, 20, 95–103.

    Google Scholar 

  96. Krishnamurti, R., & Giraud, C. (1986). Towards a shape editor: The implementation of a shape generation system. Planning and Design, 13(4), 391–403.

    Article  Google Scholar 

  97. Kundu, S. (1988). The equivalence of the subregion representation and the wall representation for a certain class of rectangular dissections. Communications of the ACM, 31, 752–763.

    Article  Google Scholar 

  98. Li, A., Chau, H., Chen, L., & Wang, Y. (2009). A prototype system for developing two-and three-dimensional shape grammars. In Proceedings of 14th International Conference on Computer-Aided Architectural Design Research in Asia (pp. 717–726).

    Google Scholar 

  99. Li, A. I. (2002). A prototype interactive simulated shape grammar. In K. Koszewski & S. Wrona (Eds.), Design e-ducation: Connecting the Real and the Virtual, Proceedings of the 20th Conference on Education in Computer Aided Architectural Design in Europe (pp. 314–317).

    Google Scholar 

  100. Li, K., Woodbury, R., & Radford, A. (1998). A comparison of shape grammars, parametric shape grammars and shape schema grammars. In J. Barrallo (Ed.), Proceedings of the Second International Conference on Mathematics and Design, San Sebastian, Spain (pp. 27–34). The University of the Basque Country.

    Google Scholar 

  101. Lunzer, A., & Hornæk, K. (2008). Subjunctive interfaces: Extending applications to support parallel setup, viewing and control of alternative scenarios. ACM Transactions on Computer-Human Interaction (TOCHI), 14(4), 17.

    Article  Google Scholar 

  102. McCormack, J. P., Cagan, J., & Vogel, C. M. (2004). Speaking the buick language: Capturing, understanding, and exploring brand identity with shape grammars. Design Studies, 25(1), 1–29.

    Article  Google Scholar 

  103. McKay, A., Chase, S., Shea, K., & Chau, H. H. (2012). Spatial grammar implementation: From theory to useable software. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 26(02), 143–159.

    Article  Google Scholar 

  104. McKay, A., Jowers, I., Chau, H. H., De Pennington, A., & Hogg, D. C. (2008). Computer aided design: An early shape synthesis system. In Global design to gain a competitive edge (pp. 3–12). Berlin: Springer.

    Google Scholar 

  105. Mitchell, W. J. (1986). Formal representations: A foundation for computer-aided architectural design. Environment and Planning B: Planning and Design, 13, 133–162.

    Article  Google Scholar 

  106. Mitchell, W. J. (1990). The logic of architecture: Design, computation, and cognition. Cambridge: MIT Press.

    Google Scholar 

  107. Mitchell, W. J., Liggett, R. S., Pollalis, S. N., & Tan, M. (1991). Integrating shape grammars and design analysis. In G. Schmitt, (Ed.), International Conference for Computer Aided Architectural Design, Zurich, Switzerland (pp. 17–32). CAAD Futures 91.

    Google Scholar 

  108. Mitchell, W. J., Liggett, R. S., & Tan, M. (1988). The topdown system and its use in teaching-an exploration of structured, knowledge-based design. In Computing in design education (pp. 251–262). ACADIA.

    Google Scholar 

  109. Mohiuddin, A., & Woodbury, R. (2015). xploreform. Accessed at http://arefin86.bitbucket.org/xploreForm/ on November 13, 2015.

  110. Mullins, S., & Rinderle, J. R. (1991). Grammatical approaches to engineering design, part I: An introduction and commentary. Research in Engineering Design, 2(3), 121–135.

    Article  Google Scholar 

  111. Newell, A., & Simon, H. (1972). Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall Inc.

    Google Scholar 

  112. Omer, A., & Sen, R. (1996). Navigation within a structured search space in layout problems. Environment and Planning B: Planning and Design, 23, 421–442.

    Google Scholar 

  113. Pearl, J. (1984). Heuristics: Intelligent search strategies for computer problem solving. Reading, MA: Addison-Wesley Publications.

    Google Scholar 

  114. Penn, G. (2006). Design space and typed feature logic. AI EDAM, 20, 121–128.

    Google Scholar 

  115. Piazzalunga, U., & Fitzhorn, P. I. (1988). Note on a three-dimensional shape grammar interpreter. Environment and Planning B: Planning and Design, 25(2), 211–233.

    Google Scholar 

  116. Prats, M., Earl, C., Garner, S., & Jowers, I. (2006). Shape exploration of designs in a style: Toward generation of product designs. AI EDAM, 20(3), 201–215.

    Google Scholar 

  117. Prezi. (2015). Prezi: The presentation software for when it matters. Accessed at https://prezi.com/ on November 13, 2015.

  118. Pugliese, M. J., & Cagan, J. (2002). Capturing a rebel: Modeling the Harley-Davidson brand through a motorcycle shape grammar. Research in Engineering Design, 13(3), 139–156.

    Google Scholar 

  119. Purcell, A., & Gero, J. (1998). Drawings and the design process: A review of protocol studies in design and other disciplines and related research in cognitive psychology. Design Studies, 19(4), 389–430.

    Article  Google Scholar 

  120. Quadrel, R., Woodbury, R., Fenves, S., & Talukdar, S. (1993). Controlling asynchronous design environments with simulated annealing. Research in Engineering Design, 5, 88–104.

    Article  Google Scholar 

  121. Radford, A. D. (1981). Optimization, simulation and multiple criteria in window design. Computer-Aided Design, 13(6), 345–350. (Special Issue Design Optimization).

    Google Scholar 

  122. Radford, A. D., & Gero, J. S. (1988). Design by optimization in architecture, building, and construction. New York, NY: Van Nostrand Reinhold.

    Google Scholar 

  123. Schon, D. A. (1984). The reflective practitioner: How professionals think in action (1st ed.). London: Basic Books.

    Google Scholar 

  124. Shneiderman, B. (2000). Creating creativity: User interfaces for supporting innovation. ACM Transactions on Computer-Human Interaction (TOCHI), 7(1), 114–138.

    Article  Google Scholar 

  125. Shneiderman, B. (2007). Creativity support tools: Accelerating discovery and innovation. Communications of the ACM, 50(12), 2032. ACM ID: 1323689.

    Google Scholar 

  126. Shneiderman, B., Fischer, G., Czerwinski, M., Resnick, M., Myers, B., Candy, L., et al. (2006). Creativity support tools: Report from a US National Science Foundation sponsored workshop. International Journal of Human-Computer Interaction, 20(2), 61–77.

    Article  Google Scholar 

  127. Smithers, T. (1994). On computing exploration and solving design problems. In J. Gero & E. Tyugu (Eds.), Formal design methods for CAD (pp. 293–313). Amsterdam: Elsevier.

    Google Scholar 

  128. Stiny, G. (1975). Pictorial and normal aspects of shape and shape grammars on computer generation of aesthetic objects. Basel, Switzerland: Birkhauser Verlag.

    Book  Google Scholar 

  129. Stiny, G. (1976). Two exercises in formal composition. Environmental and Planning B, 3, 187–210.

    Article  Google Scholar 

  130. Stiny, G. (1977). Ice-ray: A note on the generation of chinese lattice designs. Environmental and Planning B, 4, 89–98.

    Article  Google Scholar 

  131. Stiny, G. (1980). Introduction to shape and shape grammars. Environment and Planning B: Planning and Design, 7(3), 343–352.

    Article  Google Scholar 

  132. Stiny, G. (1980). Kindergarten grammars: Designing with froebel’s building gifts. Environment and Planning B: Planning and Design, 7, 409–462.

    Article  Google Scholar 

  133. Stiny, G. (1981). A note on the description of designs. Environment and Planning B: Planning and Design, 8(3), 257–268.

    Article  Google Scholar 

  134. Stiny, G. (1982). Shapes are individuals. Environment and Planning B: Planning and Design, 9, 359–367.

    Article  Google Scholar 

  135. Stiny, G. (1982). Spatial relations and grammars. Environment and Planning B: Planning and Design, 9, 113–114.

    Article  Google Scholar 

  136. Stiny, G. (1986). A new line on drafting systems. Design Computing, 1(1), 5–19.

    Google Scholar 

  137. Stiny, G. (1987). Composition counts: A + e = ae. Environment and Planning B: Planning and Design, 14, 167–182.

    Article  Google Scholar 

  138. Stiny, G. (1990a). What designers do that computers should. In M. McCullough & W. Mitchell (Eds.), The electronic design studio (pp. 17–30). Cambridge, MA: MIT Press.

    Google Scholar 

  139. Stiny, G. (1990b). What is a design? Environment and Planning B: Planning and Design, 17, 97–103.

    Article  Google Scholar 

  140. Stiny, G. (1991). The algebras of design. Research in Engineering Design, 2, 171–181.

    Article  Google Scholar 

  141. Stiny, G. (1992). Weights. Environment and Planning B: Planning and Design, 19, 413–430.

    Article  Google Scholar 

  142. Stiny, G. (1996). Useless rules. Environment and Planning B: Planning and Design, 23, 235–237.

    Google Scholar 

  143. Stiny, G. (2008). Shape: Talking about seeing and doing. Cambridge: MIT Press.

    Google Scholar 

  144. Stiny, G., & Gips, J. (1972). Shape grammars and the generative specification of painting and sculpture. In Information Processing 71, North-Holland (pp. 1460–1465).

    Google Scholar 

  145. Stiny, G., & March, L. (1981). Design machines. Environment and Planning B, 8(3), 245–255.

    Article  Google Scholar 

  146. Stiny, G., & March, L. (1981). Design machines. Environment and Planning B: Planning and Design, 8(3), 241–244.

    Article  Google Scholar 

  147. Stiny, G., & Mitchell, W. (1978). Counting palladian plans. Environment and Planning B: Planning and Design, 5, 189–198.

    Article  Google Scholar 

  148. Stiny, G., & Mitchell, W. (1978). The Palladian grammar. Environment and Planning B, 5(1), 5–18.

    Article  Google Scholar 

  149. Stiny, G., & Mitchell, W. (1980). The grammar of paradise: On the generation of mughul gardens. Environment and Planning B: Planning and Design, 7, 209–226.

    Article  Google Scholar 

  150. Stouffs, R. (2006). Design spaces: The explicit representation of spaces of alternatives. AI EDAM, 20, 61–62.

    Google Scholar 

  151. Suchman, L. (1993). Response to vera and simon’s situated action: A symbolic interpretation. Cognitive Science, 17(1), 71–75.

    Article  Google Scholar 

  152. Suchman, L. A. (1987). Plans and situated actions: The problem of human-machine communication. New York, NY, USA: Cambridge University Press.

    Google Scholar 

  153. Tapia, M. (1999). A visual implementation of a shape grammar system. Environment and Planning B, 26, 59–74.

    Article  Google Scholar 

  154. Terry, M., & Mynatt, E. D. (2002a). Recognizing creative needs in user interface design. In Proceedings of the 4th Conference on Creativity & Cognition, C&C ‘02, New York, NY, USA (pp. 38–44). ACM.

    Google Scholar 

  155. Terry, M., & Mynatt, E. D. (2002b). Side views: Persistent, on-demand previews for open-ended tasks. In Proceedings of the 15th Annual ACM Symposium on User Interface Software and Technology, UIST ‘02, New York, NY, USA (pp. 71–80). ACM.

    Google Scholar 

  156. Trescak, T., Esteva, M., & Rodriguez, I. (2012). A shape grammar interpreter for rectilinear forms. Computer-Aided Design, 44(7), 657–670.

    Article  Google Scholar 

  157. Van Langen, P. H., & Brazier, F. M. (2006). Design space exploration revisited. AI EDAM, 20, 113–119.

    Google Scholar 

  158. Vera, A. H., & Simon, H. A. (1993). Situated action: A symbolic interpretation. Cognitive Science, 17(1), 7–48.

    Article  Google Scholar 

  159. Wang, Y., & Duarte, J. P. (2002). Automatic generation and fabrication of designs. Automation in Construction, 11(3), 291–302. (Rapid Prototyping).

    Google Scholar 

  160. Watson, B., Pascal, M., Veryovka, O., Fuller, A., Wonka, P., & Sexton, C. (2008). Procedural urban modeling in practice. IEEE Computer Graphics and Applications, 28(3), 18–26.

    Article  Google Scholar 

  161. Woodbury, R. (1990). Variations in solids: A declarative treatment. Computers and Graphics, 14(2), 173–188.

    Article  Google Scholar 

  162. Woodbury, R., & Burrow, A. (2006). Whither design space? Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 20(2), 63–82.

    Google Scholar 

  163. Woodbury, R., Datta, S., & Burrow, A. (2000). Erasure in design space exploration. In Artificial Intelligence in Design 2000, Worcester, MA (pp. 521–544). Boston: Key Centre for Design Computing, Kluwer Academic Publishers.

    Google Scholar 

  164. Woodbury, R., & Griffith, E. (1993). Layouts, solids, grammar interpreters and firestations. In U. Flemming, & VanWyk, S. (Eds.), CAAD Futures 93, Carnegie Mellon University, Pittsburgh, PA (pp. 75–90). Amsterdam: Elsevier.

    Google Scholar 

  165. Woodbury, R. F. (1987). Strategies for interactive design systems. In Y. E. Kalay (Ed.), Principles of computer-aided design: Computability of design (pp. 11–36). New York, NY, USA: Wiley-Interscience.

    Google Scholar 

  166. Woodbury, R. F. (1991). Searching for designs: Paradigm and practice. Building and Environment, 26(1), 61–73.

    Article  Google Scholar 

  167. Woodbury, R. F. (1993). Grammatical hermeneutics. Architectural Science Review, 36(2), 53–64.

    Article  Google Scholar 

  168. Woodbury, R. F. (2002). A definition of shape schema grammars. In Western Computer Graphics Symposium, Vernon, BC (pp. 103–112).

    Google Scholar 

  169. Woodbury, R. F. (2015). An introduction to shape schema grammars. Environment and Planning B. (to appear).

    Google Scholar 

  170. Woodbury, R. F., & Burrow, A. L. (2006). A typology of design space explorers. AI EDAM, 20, 143–153.

    Google Scholar 

  171. Woodbury, R. F., & Burrow, A. L. (2006). Whither design space? AI EDAM, 20, 63–82.

    Article  Google Scholar 

  172. Woodbury, R. F., Burrow, A. L., Datta, S., & Chang, T.-W. (1999). Typed feature structures in design space exploration. Artificial Intelligence in Engineering Design and Manufacturing, 13(4), 287–302.

    Google Scholar 

  173. Woodbury, R. F., & Chang, T.-W. (1995). Massing and enclosure design with SEED-Config. ASCE Journal of Architectural Engineering, 1(4), 170–178.

    Article  Google Scholar 

  174. Woodbury, R. F., & Radford, A. D. (1995). Human-computer grammatical design. In T. Oksala (Ed.) DEcon’95: Special Focus Symposium and Design Convention, Baden-Baden, Germany (pp. 9–14). The International Institute for Advanced Studies in Systems Research and Cybernetics.

    Google Scholar 

  175. Woodbury, R. F., Radford, A. D., Taplin, P. N., & Coppins, S. A. (1992). Tartan worlds: A generative symbol grammar system. In D. Noble & K. Kensek (Eds.), ACADIA 92 (pp. 211–220). SC: Charleston.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Woodbury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this chapter

Cite this chapter

Woodbury, R. (2017). The Grammar Lens: How Spatial Grammar Channels Interface Design. In: Lee, JH. (eds) Morphological Analysis of Cultural DNA. KAIST Research Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-2329-3_17

Download citation

Publish with us

Policies and ethics