Skip to main content

Research Prototype and Experiments

  • Chapter
  • First Online:
Electromagnetic Linear Machines with Dual Halbach Array
  • 894 Accesses

Abstract

In this chapter, the experimental investigation is conducted on the research prototype of the tubular linear machine with dual Halbach array to verify the analytical magnetic field model , force output model, and armature reaction field model proposed in Chaps. 2, 3, and 4, respectively. The experimental results also facilitate the visualization of the magnetic field distribution, the force output variation, and armature reaction field analysis of the linear machine. As shown in Fig. 6.1, the experimental investigation of the tubular linear machine consists of three major tasks: measurement of the magnetic field distribution, the force output variation, and the armature reaction change. This chapter begins with description of research prototype , magnetic field measurement procedure of the tubular linear machine, and the corresponding data processing and analysis. The force and the armature reaction measurements are carried out on the machine and compared with the theoretical models . The experimental results confirm the proposed analytical model for further control study of the linear machine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Omura M, Shimono T, Fujimoto Y (2015) Development of semicircular tubular core-less linear motor and its motion control. IEEJ Trans Ind Appl 135(3):246–257

    Article  Google Scholar 

  2. Cheema MAM, Fletcher J, Xiao D et al (2015) A direct thrust control scheme for linear permanent magnet synchronous motor based on on-line duty ratio control, vol 31, no. 6, pp 4416–4428

    Google Scholar 

  3. Wang T, Yan L, Jiao Z (2015) Design of a novel integrated position sensor based on Hall effects for linear oscillating actuator. Rev Sci Instrum 86(7):075001

    Article  Google Scholar 

  4. Tomczuk B, Sobol M (2005) A field-network model of a linear oscillating motor and its dynamics characteristics. IEEE Trans Magn 41(8):2362–2367

    Article  Google Scholar 

  5. Xu F, Hu J, Zou J et al (2014) Comparative investigation of permanent magnet linear oscillatory actuators used in orbital friction vibration machine. Int J Appl Electromagn Mech 45(1–4):581–588

    Google Scholar 

  6. Clark RE, Smith DS, Mellor PH et al (1995) Design optimisation of moving-magnet actuators for reciprocating electro-mechanical systems. IEEE Trans Magn 31(6):3746–3748

    Article  Google Scholar 

  7. Chen X, Zhu ZQ (2011) Analytical determination of optimal split ratio of E-core permanent magnet linear oscillating actuators. IEEE Trans Ind Appl 47(1):25–33

    Article  Google Scholar 

  8. Chen X, Zhu ZQ, Howe D (2009) Modeling and analysis of a tubular oscillating permanent-magnet actuator. IEEE Trans Ind Appl 45(6):1961–1970

    Article  Google Scholar 

  9. Wheeler PW, Clare JC, Trentin A et al (2013) An overview of the more electrical aircraft. Proc Inst Mech Eng Part G: J Aerosp Eng 227(4):578–585

    Article  Google Scholar 

  10. Wang L, Zhou W, Gan Z (2011) Performance testing of linear compressors with RC approach. In: Advances in cryogenic engineering: transactions of the cryogenic engineering conference-CEC, vol 1434, no. 1, Spokane, Washington, USA, pp 1624–1631, 13–17 June 2011

    Google Scholar 

  11. Macione J, Nesbitt S, Pandit V et al (2012) Design and analysis of a novel mechanical loading machine for dynamic in vivo axial loading. Rev Sci Instrum 83(2):025113

    Article  Google Scholar 

  12. Friedman SJ, Barwick B, Batelaan H (2005) Focused-laser interferometric position sensor. Rev Sci Instrum. 76(12):123106

    Article  Google Scholar 

  13. Miklos A, Szabo Z (2015) Simulation and experimental validation of the dynamical model of a dual-rotor vibrotactor. J Sound Vib 334:98–107

    Article  Google Scholar 

  14. Bajic JS, Stupar DZ, Dakic BM et al (2014) An absolute rotary position sensor based on cylindrical coordinate color space transformation. Sens Actuators A: Phys 213:27–34

    Article  Google Scholar 

  15. Cheng CH, Hung SC, Liu WF (2014) A motor’s rotational angle sensor based on fiber Bragg grating. Microw Opt Technol Lett 56(6):1449–1452

    Article  Google Scholar 

  16. Teo TJ, Zhu H, Pang CK (2014) Modeling of a two degrees-of-freedom moving magnet linear motor for magnetically levitated positioners. IEEE Trans Magn 50(12):1–12

    Article  Google Scholar 

  17. Liang H, Jiao Z, Yan L et al (2014) Design and analysis of a tubular linear oscillating motor for directly-driven EHA pump. Sens Actuators A: Phys 210:107–118

    Article  Google Scholar 

  18. Leidhold R, Mutschler P (2007) Speed sensorless control of a long-stator linear synchronous motor arranged in multiple segments. IEEE Trans Industr Electron 54(6):3246–3254

    Article  Google Scholar 

  19. Cupertino F, Giangrande P, Pellegrino G et al (2011) End effects in linear tubular motors and compensated position sensorless control based on pulsating voltage injection. IEEE Trans Industr Electron 58(2):494–502

    Article  Google Scholar 

  20. Cheok AD, Ertugrul N (2000) High robustness and reliability of fuzzy logic based position estimation for sensorless switched reluctance motor drives. IEEE Trans Power Electron 15(2):319–334

    Article  Google Scholar 

  21. Foo G, Rahman MF (2010) Sensorless sliding-mode MTPA control of an IPM synchronous motor drive using a sliding-mode observer and HF signal injection. IEEE Trans Industr Electron 57(4):1270–1278

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Yan .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Yan, L., Zhang, L., Peng, J., Zhang, L., Jiao, Z. (2017). Research Prototype and Experiments. In: Electromagnetic Linear Machines with Dual Halbach Array. Springer, Singapore. https://doi.org/10.1007/978-981-10-2309-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2309-5_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2307-1

  • Online ISBN: 978-981-10-2309-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics