Skip to main content

Armature Reaction Field and Inductance

  • Chapter
  • First Online:
Electromagnetic Linear Machines with Dual Halbach Array
  • 906 Accesses

Abstract

Analysis of armature reaction field and inductance is extremely important for design and control implementation of electromagnetic machines. So far, most studies have focused on magnetic field generated by permanent magnet poles, whereas less work has been done on armature reaction field . This chapter proposes a novel analytical modeling method to predict the armature reaction field of a coreless permanent magnet tubular linear machine (PMTLM) with dual Halbach array. Unlike conventional modeling approach, the proposed method formulates the armature reaction field for electromagnetic machines with finite length, so that the analytical modeling precision can be improved. In addition, winding inductance is also analytically formulated to facilitate dynamic motion control based on the reaction field solutions. Numerical result is subsequently obtained with finite element method , and employed to validate the derived analytical models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jang SM, Jeong SS (2001) Armature reaction effect and inductance of moving coil linear oscillatory actuator with unbalanced magnetic circuit. IEEE Trans Magn 37(4):2847–2850

    Article  Google Scholar 

  2. Rigatos GG (2009) Adaptive fuzzy control of DC motors using state and output feedback. Electr Power Syst Res 79(11):1579–1592

    Article  Google Scholar 

  3. Shen JX, Tseng KJ (2003) Analyses and compensation of rotor position detection error in sensorless PM brushless DC motor drives. IEEE Trans Energy Convers 18(1):87–93

    Article  Google Scholar 

  4. Horng JH (1999) Neural adaptive tracking control of a DC motor. Inf Sci 118(1):1–13

    Article  MathSciNet  Google Scholar 

  5. Praveen RP, Ravichandran MH, Achari VTS et al (2012) A novel slotless Halbach-array permanent-magnet brushless dc motor for spacecraft applications. IEEE Trans Industr Electron 59(9):3553–3560

    Article  Google Scholar 

  6. Vansompel H, Sergeant P, Dupr L (2012) A multilayer 2-DC2-D coupled model for eddy current calculation in the rotor of an axial-flux PM machine. IEEE Trans Energy Convers 27(3):784–791

    Article  Google Scholar 

  7. Fujimoto Y, Kominami T, Hamada H (2009) Development and analysis of a high thrust force direct-drive linear actuator. IEEE Trans Industr Electron 56(5):1383–1392

    Article  Google Scholar 

  8. Asama J, Hamasaki Y, Oiwa T et al (2013) Proposal and analysis of a novel single-drive bearingless motor. IEEE Trans Industr Electron 60(1):129–138

    Article  Google Scholar 

  9. He JL, Levi E, Zabar Z et al (1991) Analysis of induction-type coilgun performance based on cylindrical current sheet model. IEEE Trans Magn 27(1):579–584

    Article  Google Scholar 

  10. Zhu ZQ, Howe D, Bolte E et al (1993) Instantaneous magnetic field distribution in brushless permanent magnet DC motors, part I: Open-circuit field. IEEE Trans Magn 29(1):124–135

    Article  Google Scholar 

  11. Chan TF, Lai LL, Xie S (2009) Field computation for an axial flux permanent-magnet synchronous generator. IEEE Trans Energy Convers 24(1):1–11

    Article  Google Scholar 

  12. Bianchi N, Bolognani S, Corte DD et al (2003) Tubular linear permanent magnet motors: an overall comparison. IEEE Trans Ind Appl 39(2):466–475

    Article  Google Scholar 

  13. Lou Z, Yu K, Wang L et al (2010) Two-reaction theory of homopolar inductor alternator. IEEE Trans Energy Convers 25(3):677–679

    Article  Google Scholar 

  14. Torkaman H, Afjei E, Toulabi MS (2012) New double-layer-per-phase isolated switched reluctance motor: concept, numerical analysis, and experimental confirmation. IEEE Trans Industr Electron 59(2):830–838

    Article  Google Scholar 

  15. Wang J, Jewell GW, Howe D (1999) A general framework for the analysis and design of tubular linear permanent magnet machines. IEEE Trans Magn 35(3):1986–2000

    Article  Google Scholar 

  16. Amara Y, Barakat G, Reghem P (2011) Armature reaction magnetic field of tubular linear surface-inset permanent-magnet machines. IEEE Trans Magn 47(4):805–811

    Article  Google Scholar 

  17. Amara Y, Barakat G (2010) Analytical modeling of magnetic field in surface mounted permanent-magnet tubular linear machines. IEEE Trans Magn 46(11):3870–3884

    Article  Google Scholar 

  18. Cupertino F, Giangrande P, Pellegrino G et al (2011) End effects in linear tubular motors and compensated position sensorless control based on pulsating voltage injection. IEEE Trans Industr Electron 58(2):494–502

    Article  Google Scholar 

  19. Bellara A, Tiegna H, Amara Y et al (2012) On load analytical modelling of the magnetic field for axial flux surface-inset permanent magnet machines with semi-closed slots. In: Electrical machines (ICEM), Marseille, France, pp 2852–2858. 2–5 September 2012

    Google Scholar 

  20. Chen YT, Chiu CL, Jhang YR et al (2013) A driver for the single-phase brushless DC fan motor with hybrid winding structure. IEEE Trans Industr Electron 60(10):4369–4375

    Article  Google Scholar 

  21. Struve functions (2014). http://www.maplesoft.com/support/help/Maple/view.aspx?path=StruveH

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Yan .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Yan, L., Zhang, L., Peng, J., Zhang, L., Jiao, Z. (2017). Armature Reaction Field and Inductance. In: Electromagnetic Linear Machines with Dual Halbach Array. Springer, Singapore. https://doi.org/10.1007/978-981-10-2309-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2309-5_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2307-1

  • Online ISBN: 978-981-10-2309-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics