Skip to main content

Jacobian Matrices of Ray R̄i with Respect to Incoming Ray R̄i–1 and Boundary Variable Vector X̄i

  • Chapter
  • First Online:
Advanced Geometrical Optics

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 4))

  • 2211 Accesses

Abstract

In automated optical design systems, the Jacobian matrix of an optical quantity with respect to the system variables is generally estimated using the Finite Difference (FD) method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wynne CG, Wormell P (1963) Lens design by computer. Appl Opt 2:1223–1238

    Article  ADS  Google Scholar 

  2. Fede DP (1963) Automatic optical design. Appl Opt 2:1209–1226

    Article  ADS  Google Scholar 

  3. Rimmer M (1970) Analysis of perturbed lens systems. Appl Opt 9:533–537

    Article  ADS  Google Scholar 

  4. Hopkins HH, Tiziani HJ (1966) A theoretical and experimental study of lens centering errors and their influence on optical image quality. Brit J Appl Phys 17:33–54

    Article  ADS  Google Scholar 

  5. Andersen TB (1982) Optical aberration functions: chromatic aberrations and derivatives with respect to refractive indices for symmetrical systems. Appl Opt 21:4040–4044

    Article  ADS  Google Scholar 

  6. Gupta SK, Hradaynath R (1983) Angular tolerance on Dove prisms. Appl Opt 22:3146–3147

    Article  ADS  Google Scholar 

  7. Lee JF, Leung CY (1989) Method of calculating the alignment tolerance of a Porro prism resonator. Appl Opt 28:3691–3697

    Article  ADS  Google Scholar 

  8. Stone BD (1997) Perturbations of optical systems. J Opt Soc Am A 14:2837–2849

    Article  ADS  Google Scholar 

  9. Grey DS (1978) The inclusion of tolerance sensitivities in the merit function for lens optimization. SPIE 147:63–65

    ADS  Google Scholar 

  10. Herrera EG, Strojnik M (2008) Interferometric tolerance determination for a Dove prism using exact ray trace. Opt Commun 281:897–905

    Article  ADS  Google Scholar 

  11. Mao W (1995) Adjustment of reflecting prisms. Opt Eng 1(34):79–82

    Article  ADS  Google Scholar 

  12. Chandler KN (1960) On the effect of small errors in angles of corner-cube reflectors. J Opt Soc Am 50:203–206

    Article  ADS  Google Scholar 

  13. Lin N (1994) Orientation conjugation of reflecting prism rotation and second-order approximation of image rotation. Opt Eng 33:2400–2407

    Article  ADS  Google Scholar 

  14. Gutierrez E, Strojnik M, Paez G (2006) Tolerance determination for a Dove prism using exact ray trace. Proc SPIE 6307:63070K

    Article  ADS  Google Scholar 

  15. Virendra NM (1998) Optical imaging and aberrations. SPIE Press, Part I Ray Geometrical Optics

    Google Scholar 

  16. Stone BD (1997) Determination of initial ray configurations for asymmetric systems. J Opt Soc Am A: 14:3415–3429

    Article  ADS  Google Scholar 

  17. Andersen TB (1982) Optical aberration functions: derivatives with respect to axial distances for symmetrical systems. Appl Opt 21:1817–1823

    Article  ADS  Google Scholar 

  18. Andersen TB (1985) Optical aberration functions: derivatives with respect to surface parameters for symmetrical systems. Appl Opt 24:1122–1129

    Article  ADS  Google Scholar 

  19. Feder DP (1957) Calculation of an optical merit function and its derivatives with respect to the system parameters. J Opt Soc Am 47:913–925

    Article  ADS  MathSciNet  Google Scholar 

  20. Feder DP (1968) Differentiation of raytracing equations with respect to constructional parameters of rotationally symmetric systems. J Opt Soc Am 58:1494–1505

    Article  ADS  Google Scholar 

  21. Stavroudis O (1976) A simpler derivation of the formulas for generalized ray tracing. J Opt Soc Am 66:1330–1333

    Article  ADS  MathSciNet  Google Scholar 

  22. Kross J (1988) Differential ray tracing formulae for optical calculations: principles and applications, SPIE, vol 1013, Optical design method, and large optics, pp 10–18

    Google Scholar 

  23. Oertmann W (1988) Differential ray tracing formulae; applications especially to aspheric optical systems, SPIE, vol 1013, Optical design method, and large optics, pp 20–26

    Google Scholar 

  24. Lin PD, Tsai CY (2012) Determination of first-order derivatives of skew-ray at aspherical surface. J Opt Soc Am A 29:1141–1153

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Psang Dain Lin .

Appendices

Appendix 1

To determine \( {{\partial {\bar{\text{R}}}_{\text{i}} } / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} \) at a spherical boundary surface \( {\bar{\text{r}}}_{\text{i}} \), the following terms are required in advance:

  1. (1)

    \( {{\partial\upsigma_{\text{i}} } / {\partial \bar{\text{R}}_{{{\text{i}} - 1}} }} \), \( {{\partial\uprho_{\text{i}} } / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} \) and \( {{\partial\uptau_{\text{i}} } / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} \):

From Eq. (2.12), \( {}^{\text{i}}{\bar{\text{P}}}_{\text{i}} = {}^{\text{i}}{\bar{\text{A}}}_{0} \,{\bar{\text{P}}}_{\text{i}} = ({}^{\text{0}}{\bar{\text{A}}}_{\text{i}} )^{ - 1} \,{\bar{\text{P}}}_{\text{i}} = \left[ {\begin{array}{*{20}c} {\upsigma_{\text{i}} } & {\uprho_{\text{i}} } & {\uptau_{\text{i}} } & 1 \\ \end{array} } \right]^{\text{T}} \). Thus,

$$ {\bar{\text{P}}}_{\text{i}} = {}^{\text{0}}{\bar{\text{A}}}_{\text{i}} \left[ {\begin{array}{*{20}c} {\upsigma_{\text{i}} } \\ {\uprho_{\text{i}} } \\ {\uptau_{\text{i}} } \\ 1 \\ \end{array} } \right]. $$
(7.56)

Differentiating Eq. (7.56) with respect to incoming ray \( {\bar{\text{R}}}_{{{\text{i}} - 1}} \) yields

$$ \frac{{\partial {\bar{\text{P}}}_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} = {}^{0}{\bar{\text{A}}}_{\text{i}} \left[ {\begin{array}{*{20}c} {{{\partial\upsigma_{\text{i}} } / {\partial {\bar{\text{R}}}_{{\text{i} - 1}} }}} \\ {{{\partial\uprho_{\text{i}} } / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}} \\ {{{\partial\uptau_{\text{i}} } / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}} \\ {\bar{0}} \\ \end{array} } \right], $$
(7.57)

where \( {{\partial {\bar{\text{P}}}_{\text{i}} } / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} \) is given in Eq. (7.20). \( {{\partial\upsigma_{\text{i}} } / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} \), \( {{\partial\uprho_{\text{i}} } / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} \) and \( {{\partial\uptau_{\text{i}} } / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} \) can then be determined from

$$ \left[ {\begin{array}{*{20}c} {{{\partial\upsigma_{\text{i}} } / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} \, }}} \\ {{{\partial\uprho_{\text{i}} } / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}} \\ {{{\partial\uptau_{\text{i}} } / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}} \\ {\bar{0}} \\ \end{array} } \right] = \left( {{}^{0}{\bar{\text{A}}}_{\text{i}} } \right)^{ - 1} \,\frac{{\partial {\bar{\text{P}}}_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}. $$
(7.58)
  1. (2)

    \( {{\partial\upalpha_{\text{i}} } / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} \) and \( {{\partial\upbeta_{\text{i}} } / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} \):

\( {{\partial\upalpha_{\text{i}} } / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} \) and \( {{\partial\upbeta_{\text{i}} } / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} \) can be obtained by differentiating Eqs. (2.19) and (2.20), respectively, with respect to \( {\bar{\text{R}}}_{{{\text{i}} - 1}} \), that is,

$$ \frac{{\partial {\upalpha }_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} = \frac{1}{{{\upsigma }_{\text{i}}^{ 2} + {\uprho }_{\text{i}}^{ 2} }}\left( {\upsigma}_{\text{i}} \frac{{\partial {\uprho }_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} - {\uprho }_{\text{i}} \frac{{\partial {\upsigma }_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} \right), $$
(7.59)
$$ \frac{{\partial\upbeta_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} = \frac{{\sqrt {\left( {\upsigma_{\text{i}}^{\text{2}} + \rho_{\text{i}}^{2} } \right)} }}{{(\upsigma_{\text{i}}^{\text{2}} +\uprho_{\text{i}}^{2} +\uptau_{\text{i}}^{2} )}}\frac{{\partial\uptau_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} - \frac{{\tau_{\text{i}} }}{{(\upsigma_{\text{i}}^{\text{2}} +\uprho_{\text{i}}^{2} +\uptau_{\text{i}}^{2} )\sqrt {\left( {\upsigma_{\text{i}}^{\text{2}} +\uprho_{\text{i}}^{2} } \right)} }}\left( {\upsigma_{\text{i}} \frac{{\partial\upsigma_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} +\uprho_{\text{i}} \frac{{\partial\uprho_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}} \right). $$
(7.60)
  1. (3)

    \( {{\partial {\bar{\text{n}}}_{\text{i}} } / {\partial {\bar{\text{X}}}_{\text{i}} }} \):

\( {{\partial {\bar{\text{n}}}_{\text{i}} } / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} \) can be obtained by differentiating Eq. (2.10) with respect to \( {\bar{\text{R}}}_{{{\text{i}} - 1}} \) to give

$$ \frac{{\partial {\bar{\text{n}}}_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} = \left[ {\begin{array}{*{20}c} {{{\partial {\text{n}}_{\text{ix}} } / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}} \\ {{{\partial {\text{n}}_{\text{iy}} } / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}} \\ {{{\partial {\text{n}}_{\text{iz}} } / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}} \\ {\bar{0}} \\ \end{array} } \right] = {}^{0}{\bar{\text{A}}}_{\text{i}} \,\frac{{\partial ({}^{\text{i}}{\bar{\text{n}}}_{\text{i}} )}}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}, $$
(7.61)

where \( {{\partial ({}^{\text{i}}{\bar{\text{n}}}_{\text{i}} )} / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} \) is obtained by differentiating Eq. (2.8) with respect to \( {\bar{\text{R}}}_{{{\text{i}} - 1}} \), yielding

$$ \frac{{\partial ({}^{\text{i}}{\bar{\text{n}}}_{\text{i}} )}}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} = {\text{s}}_{\text{i}} \left[ {\begin{array}{*{20}c} { - {\text{S}}\upbeta_{\text{i}} {\text{C}}\upalpha_{\text{i}} } \\ { - {\text{S}}\upbeta_{\text{i}} {\text{S}}\upalpha_{\text{i}} } \\ {{\text{C}}\upbeta_{\text{i}} } \\ 0 \\ \end{array} } \right]\frac{{\partial\upbeta_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} + {\text{s}}_{\text{i}} \left[ {\begin{array}{*{20}c} { - {\text{C}}\upbeta_{\text{i}} {\text{S}}\upalpha_{\text{i}} } \\ {{\text{C}}\upbeta_{\text{i}} {\text{C}}\upalpha_{\text{i}} } \\ 0 \\ 0 \\ \end{array} } \right]\frac{{\partial\upalpha_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}. $$
(7.62)
  1. (4)

    \( {{\partial ({\text{C}}\uptheta_{\text{i}} )} / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} \):

\( {{\partial ({\text{C}}\uptheta_{\text{i}} )} / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} \) can be computed directly from Eq. (2.21) as

$$ \begin{aligned} \frac{{\partial ({\text{C}}\uptheta_{\text{i}} )}}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} & = - \left( {\bar{\mathcal{\ell }}_{{{\text{i}}\text{ - 1}}} \cdot \frac{{\partial {\bar{\text{n}}}_{\text{i}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} + \frac{{\partial \bar{\mathcal{\ell }}_{{{\text{i}}\text{ - 1}}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} \cdot {\bar{\text{n}}}_{\text{i}} } \right), \\ & = - \, \left( {\ell_{{{\text{i}}\text{ - 1}{\text{x}}}} \frac{{\partial {\text{n}}_{\text{ix}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} + \ell_{{\text{i - 1y}}} \frac{{\partial {\text{n}}_{\text{iy}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} + \ell_{{{\text{i}}\text{ - 1}{\text{z}}}} \frac{{\partial {\text{n}}_{\text{iz}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}} \right) - \left( {\frac{{\partial \ell_{{{\text{i}} - \text{1}{\text{x}}}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}{\text{n}}_{\text{ix}} + \frac{{\partial \ell_{{{\text{i}} - \text{1}{\text{y}}}} }}{{\partial \bar{\text{R}}_{{{\text{i}} - 1}} }}n_{{\text{iy}}} + \frac{{\partial \ell_{{{\text{i}} - \text{1}{\text{z}}}} }}{{\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }}{\text{n}}_{\text{iz}} } \right) \\ \end{aligned} $$
(7.63)

where \( {{\partial {\text{n}}_{\text{ix}} } / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} \), \( {{\partial {\text{n}}_{\text{iy}} } / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} \) and \( {{\partial {\text{n}}_{\text{iz}} } / {\partial {\bar{\text{R}}}_{{{\text{i}} - 1}} }} \) are given in Eq. (7.61).

Appendix 2

To determine \( {{\partial \bar{\text{R}}_{\text{i}} } / {\partial {\bar{\text{X}}}_{\text{i}} }} \) at spherical boundary surface \( {\bar{\text{r}}}_{\text{ i}} \), the following terms are required in advance

  1. (1)

    \( {{\partial ({}^{0}{\bar{\text{A}}}_{\text{i}} )} / {\partial {\bar{\text{X}}}_{\text{i}} }} \) (a matrix with dimensions \( 4 \times 4 \times 9 \)):

The components of \( {{\partial ({}^{0}{\bar{\text{A}}}_{\text{i}} )} / {\partial {\bar{\text{X}}}_{\text{i}} }} \) can be determined by differentiating \( {}^{0}{\bar{\text{A}}}_{\text{i}} \) given in Eq. (2.9) with respect to boundary variable vector (Eq. (2.30))

$$ \bar{\text{X}}_{\text{i}} = \left[ {\begin{array}{*{20}c} {{\text{t}}_{\text{ix}} } & {{\text{t}}_{\text{iy}} } & {{\text{t}}_{\text{iz}} } & {\upomega_{\text{ix}} } & {\upomega_{\text{iy}} } & {\upomega_{\text{iz}} } & {\upxi_{{{\text{i}} - 1}} } & {{\upxi}_{\text{i}} } & {{\text{R}}_{\text{i}} } \\ \end{array} } \right]^{\text{T}} , $$

to give

$$ \frac{{\partial ({}^{0}{\bar{\text{A}}}_{\text{i}} )}}{{\partial {\text{t}}_{\text{ix}} }} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right], $$
(7.64)
$$ \frac{{\partial ({}^{0}{\bar{\text{A}}}_{\text{i}} )}}{{\partial {\text{t}}_{\text{iy}} }} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right], $$
(7.65)
$$ \frac{{\partial ({}^{0}{\bar{\text{A}}}_{\text{i}} )}}{{\partial {\text{t}}_{\text{iz}} }} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right], $$
(7.66)
$$ \frac{{\partial ({}^{0}{\bar{\text{A}}}_{\text{i}} )}}{{\partial\upomega_{\text{ix}} }} = \left[ {\begin{array}{*{20}c} 0 & {{\text{C}}\upomega_{\text{iz}} {\text{S}}\upomega_{\text{iy}} {\text{C}}\upomega_{\text{ix}} + {\text{S}}\upomega_{\text{iz}} {\text{S}}\upomega_{\text{ix}} } & { - {\text{C}}\upomega_{\text{iz}} {\text{S}}\upomega_{\text{iy}} {\text{S}}\upomega_{\text{ix}} + {\text{S}}\upomega_{\text{iz}} {\text{C}}\upomega_{\text{ix}} } & 0 \\ 0 & {\text{S}\omega_{{\text{iz}}} \text{S}\omega_{{\text{iy}}} \text{C}\omega_{{\text{ix}}} - {\text{C}}\upomega_{\text{iz}} {\text{S}}\upomega_{\text{ix}} } & { - {\text{S}}\upomega_{\text{iz}} {\text{S}}\upomega_{\text{iy}} {\text{S}}\upomega_{\text{ix}} - {\text{C}}\upomega_{\text{iz}} {\text{C}}\upomega_{\text{ix}} } & 0 \\ 0 & {{\text{C}}\upomega_{\text{iy}} {\text{C}}\upomega_{\text{ix}} } & { - {\text{C}}\upomega_{\text{iy}} {\text{S}}\upomega_{\text{ix}} } & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right], $$
(7.67)
$$ \frac{{\partial ({}^{0}{\bar{\text{A}}}_{\text{i}} )}}{{\partial\upomega_{\text{iy}} }} = \left[ {\begin{array}{*{20}c} { - {\text{C}}\upomega_{\text{iz}} {\text{S}}\upomega_{\text{iy}} } & {{C\omega }_{\text{iz}} {\text{C}}\upomega_{\text{iy}} {\text{S}}\upomega_{\text{ix}} } & {{\text{C}}\upomega_{\text{iz}} {\text{C}}\upomega_{\text{iy}} {\text{C}}\upomega_{\text{ix}} } & 0 \\ { - {\text{S}}\upomega_{\text{iz}} {S\omega }_{\text{iy}} } & {{\text{S}}\upomega_{\text{iz}} {\text{C}}\upomega_{\text{iy}} {\text{S}}\upomega_{\text{ix}} } & {{\text{S}}\upomega_{\text{iz}} {\text{C}}\upomega_{\text{iy}} {\text{C}}\upomega_{\text{ix}} } & 0 \\ { - {\text{C}}\upomega_{\text{iy}} } & { - {\text{S}}\upomega_{\text{iy}} {\text{S}}\upomega_{\text{ix}} } & { - {\text{S}}\upomega_{\text{iy}} {\text{C}}\upomega_{\text{ix}} } & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right], $$
(7.68)
$$ \frac{{\partial ({}^{0}{\bar{\text{A}}}_{\text{i}} )}}{{\partial\upomega_{\text{iz}} }} = \left[ {\begin{array}{*{20}c} { - {\text{S}}\upomega_{\text{iz}} {\text{C}}\upomega_{\text{iy}} } & { - {\text{S}}\upomega_{\text{iz}} {\text{S}}\upomega_{\text{iy}} {\text{S}}\upomega_{\text{ix}} - \text{C}\omega_{{\text{iz}}} \text{C}\omega_{{\text{ix}}} } & { - {\text{S}}\upomega_{\text{iz}} {\text{S}}\upomega_{\text{iy}} {\text{C}}\upomega_{\text{ix}} + {\text{C}}\upomega_{\text{iz}} {\text{S}}\upomega_{\text{ix}} } & 0 \\ {{\text{C}}\upomega_{\text{iz}} {\text{C}}\upomega_{\text{iy}} } & {{\text{C}}\upomega_{\text{iz}} {\text{S}}\upomega_{\text{iy}} {\text{S}}\upomega_{\text{ix}} - {\text{S}}\upomega_{\text{iz}} {\text{C}}\upomega_{\text{ix}} } & {{\text{C}}\upomega_{\text{iz}} {\text{S}}\upomega_{\text{iy}} {\text{C}}\upomega_{\text{ix}} + {\text{S}}\upomega_{\text{iz}} {\text{S}}\upomega_{\text{ix}} } & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right], $$
(7.69)
$$ \frac{{\partial ({}^{0}{\bar{\text{A}}}_{\text{i}} )}}{{\partial\upxi_{{{\text{i}}\text{ - 1}}} }} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right], $$
(7.70)
$$ \frac{{\partial ({}^{0}{\bar{\text{A}}}_{\text{i}} )}}{{\partial\upxi_{\text{i}} }} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right], $$
(7.71)
$$ \frac{{\partial ({}^{0}{\bar{\text{A}}}_{\text{i}} )}}{{\partial {\text{R}}_{\text{i}} }} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right]. $$
(7.72)
  1. (2)

    \( {{\partial\upsigma_{\text{i}} } / {\partial {\bar{\text{X}}}_{\text{i}} }} \), \( {{\partial\uprho_{\text{i}} } / {\partial {\bar{\text{X}}}_{\text{i}} }} \) and \( {{\partial\uptau_{\text{i}} } / {\partial {\bar{\text{X}}}_{\text{i}} }} \):

From \( {}^{\text{i}}{\bar{\text{P}}}_{\text{i}} = {}^{\text{i}}{\bar{\text{A}}}_{0} {\bar{\text{P}}}_{\text{i}} = ({}^{\text{0}}{\bar{\text{A}}}_{\text{i}} )^{ - 1} \,{\bar{\text{P}}}_{\text{i}} \) given in Eq. (2.12), it can be shown that

$$ {\bar{\text{P}}}_{\text{i}} = {}^{\text{0}}{\bar{\text{A}}}_{\text{i}} \, \left[ {\begin{array}{*{20}c} {\upsigma_{\text{i}} } \\ {\uprho_{\text{i}} } \\ {\uptau_{\text{i}} } \\ 1 \\ \end{array} } \right]. $$
(7.73)

Differentiating Eq. (7.73) with respect to \( {\bar{\text{X}}}_{\text{i}} \) gives

$$ \frac{{\partial {\bar{\text{P}}}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} = \frac{{\partial ({}^{0}{\bar{\text{A}}}_{\text{i}} )}}{{\partial {\bar{\text{X}}}_{\text{i}} }}\left[ {\begin{array}{*{20}c} {\upsigma_{\text{i}} } \\ {\uprho_{\text{i}} } \\ {\uptau_{\text{i}} } \\ 1 \\ \end{array} } \right] + {}^{0}{\bar{\text{A}}}_{\text{i}} \left[ {\begin{array}{*{20}c} {{{\partial\upsigma_{\text{i}} } / {\partial {\bar{\text{X}}}_{\text{i}} }}} \\ {{{\partial\uprho_{\text{i}} } / {\partial {\bar{\text{X}}}_{\text{i}} }}} \\ {{{\partial\uptau_{\text{i}} } / {\partial {\bar{\text{X}}}_{\text{i}} }}} \\ {\bar{0}} \\ \end{array} } \right], $$
(7.74)

where \( {{\partial {\bar{\text{P}}}_{\text{i}} } / {\partial {\bar{\text{X}}}_{\text{i}} }} \) is given in Eq. (7.43) and the components of \( {{\partial ({}^{0}{\bar{\text{A}}}_{\text{i}} )} / {\partial {\bar{\text{X}}}_{\text{i}} }} \) are listed in Eqs. (7.64)–(7.72) of this appendix. \( {{\partial\upsigma_{\text{i}} } / {\partial {\bar{\text{X}}}_{\text{i}} }} \), \( {{\partial\uprho_{\text{i}} } / {\partial {\bar{\text{X}}}_{\text{i}} }} \) and \( {{\partial {\uptau }_{\text{i}} } / {\partial {\bar{\text{X}}}_{\text{i}} }} \) can then be obtained from

$$ \left[ {\begin{array}{*{20}c} {{{\partial\upsigma_{\text{i}} } / {\partial {\bar{\text{X}}}_{\text{i}} \, }}} \\ {{{\partial\uprho_{\text{i}} } / {\partial {\bar{\text{X}}}_{\text{i}} }}} \\ {{{\partial\uptau_{\text{i}} } / {\partial {\bar{\text{X}}}_{\text{i}} }}} \\ {\bar{0}} \\ \end{array} } \right] = \left( {{}^{0}{\bar{\text{A}}}_{\text{i}} } \right)^{ - 1} \left( {\frac{{\partial {\bar{\text{P}}}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} - \frac{{\partial ({}^{0}{\bar{\text{A}}}_{\text{i}} )}}{{\partial {\bar{\text{X}}}_{\text{i}} }}\left[ {\begin{array}{*{20}c} {\upsigma_{\text{i}} } \\ {\uprho_{\text{i}} } \\ {\uptau_{\text{i}} } \\ 1 \\ \end{array} } \right]} \right). $$
(7.75)
  1. (3)

    \( {{\partial\upalpha_{\text{i}} } / {\partial {\bar{\text{X}}}_{\text{i}} }} \) and \( {{\partial\upbeta_{\text{i}} } / {\partial {\bar{\text{X}}}_{\text{i}} }} \):

\( {{\partial\upalpha_{\text{i}} } / {\partial {\bar{\text{X}}}_{\text{i}} }} \) and \( {{\partial\upbeta_{\text{i}} } / {\partial {\bar{\text{X}}}_{\text{i}} }} \) can be obtained by differentiating Eqs. (2.19) and (2.20), respectively, with respect to \( {\bar{\text{X}}}_{\text{i}} \) to give

$$ \frac{{\partial\upalpha_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} = \frac{1}{{\upsigma_{\text{i}}^{ 2} +\uprho_{\text{i}}^{ 2} }}\left( {\upsigma_{\text{i}} \frac{{\partial\uprho_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} -\uprho_{\text{i}} \frac{{\partial\upsigma_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }}} \right), $$
(7.76)
$$ \frac{{\partial\upbeta_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} = \frac{{\sqrt {\left( {\upsigma_{\text{i}}^{\text{2}} +\uprho_{\text{i}}^{2} } \right)} }}{{(\upsigma_{\text{i}}^{\text{2}} +\uprho_{\text{i}}^{2} +\uptau_{\text{i}}^{2} )}}\frac{{\partial\uptau_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} - \frac{{\uptau_{\text{i}} }}{{(\sigma_{\text{i}}^{\text{2}} +\uprho_{\text{i}}^{2} +\uptau_{\text{i}}^{2} )\sqrt {\left( {\upsigma_{\text{i}}^{\text{2}} +\uprho_{\text{i}}^{2} } \right)} }}\left( {\upsigma_{\text{i}} \frac{{\partial\upsigma_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} +\uprho_{\text{i}} \frac{{\partial\uprho_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }}} \right). $$
(7.77)
  1. (4)

    \( {{\partial {\bar{\text{n}}}_{\text{i}} } / {\partial {\bar{\text{X}}}_{\text{i}} }} \):

\( {{\partial {\bar{\text{n}}}_{\text{i}} } / {\partial {\bar{\text{X}}}_{\text{i}} }} \) can be obtained by differentiating Eq. (2.10) with respect to \( {\bar{\text{X}}}_{\text{i}} \) to give

$$ \frac{{\partial {\bar{\text{n}}}_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} = \left[ {\begin{array}{*{20}c} {{{\partial {\text{n}}_{\text{ix}} } / {\partial {\bar{\text{X}}}_{\text{i}} }}} \\ {{{\partial {\text{n}}_{\text{iy}} } / {\partial {\bar{\text{X}}}_{\text{i}} }}} \\ {{{\partial {\text{n}}_{\text{iz}} } / {\partial {\bar{\text{X}}}_{\text{i}} }}} \\ {\bar{0}} \\ \end{array} } \right] = \frac{{\partial ({}^{0}{\bar{\text{A}}}_{\text{i}} )}}{{\partial {\bar{\text{X}}}_{\text{i}} }}{}^{\text{i}}{\bar{\text{n}}}_{\text{i}} + {}^{0}{\bar{\text{A}}}_{\text{i}} \, \frac{{\partial ({}^{\text{i}}{\bar{\text{n}}}_{\text{i}} )}}{{\partial {\bar{\text{X}}}_{\text{i}} }}, $$
(7.78)

where \( {{\partial ({}^{\text{i}}{\bar{\text{n}}}_{\text{i}} )} / {\partial {\bar{\text{X}}}_{\text{i}} }} \) is obtained by differentiating Eq. (2.8) to give

$$ \frac{{\partial ({}^{\text{i}}{\bar{\text{n}}}_{\text{i}} )}}{{\partial {\bar{\text{X}}}_{\text{i}} }} = {\text{s}}_{\text{i}} \left[ {\begin{array}{*{20}c} { - {\text{S}}\upbeta_{\text{i}} {\text{C}}\upalpha_{\text{i}} } \\ { - {\text{S}}\upbeta_{\text{i}} {\text{S}}\upalpha_{\text{i}} } \\ {{\text{C}}\upbeta_{\text{i}} } \\ 0 \\ \end{array} } \right]\frac{{\partial\upbeta_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} + {\text{s}}_{\text{i}} \left[ {\begin{array}{*{20}c} { - {\text{C}}\upbeta_{\text{i}} {\text{S}}\upalpha_{\text{i}} } \\ {{\text{C}}\upbeta_{\text{i}} {\text{C}}\upalpha_{\text{i}} } \\ 0 \\ 0 \\ \end{array} } \right]\frac{{\partial\upalpha_{\text{i}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }}. $$
(7.79)
  1. (5)

    \( {{\partial ({\text{C}}\uptheta_{\text{i}} )} / {\partial {\bar{\text{X}}}_{\text{i}} }} \)

\( {{\partial ({\text{C}}\uptheta_{\text{i}} )} / {\partial {\bar{\text{X}}}_{\text{i}} }} \) can be computed directly from Eq. (2.21) as

$$ \frac{{\partial ({\text{C}}\uptheta_{\text{i}} )}}{{\partial {\bar{\text{X}}}_{\text{i}} }} = - \left({\ell_{{{\text{i}}\text{- 1}{\text{x}}}} \frac{{\partial {\text{n}}_{\text{ix}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} + \ell_{{{\text{i}}\text{- 1}{\text{y}}}} \frac{{\partial {\text{n}}_{\text{iy}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }} + \ell_{{{\text{i}}\text{- 1}{\text{z}}}} \frac{{\partial {\text{n}}_{\text{iz}} }}{{\partial {\bar{\text{X}}}_{\text{i}} }}} \right), $$
(7.80)

where \( {{\partial {\text{n}}_{\text{ix}} } / {\partial {\bar{\text{X}}}_{\text{i}} }} \), \( {{\partial {\text{n}}_{\text{iy}} } / {\partial {\bar{\text{X}}}_{\text{i}} }} \) and \( {{{\partial}{\text{n}}_{\text{iz}} } / {{\partial}{\bar{\text{X}}}_{\text{i}} }} \) are given in Eq. (7.78).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Lin, P.D. (2017). Jacobian Matrices of Ray R̄i with Respect to Incoming Ray R̄i–1 and Boundary Variable Vector X̄i . In: Advanced Geometrical Optics. Progress in Optical Science and Photonics, vol 4. Springer, Singapore. https://doi.org/10.1007/978-981-10-2299-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2299-9_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2298-2

  • Online ISBN: 978-981-10-2299-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics