Skip to main content

Wavefront Aberration and Wavefront Shape

  • Chapter
  • First Online:
Advanced Geometrical Optics

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 4))

Abstract

The study of optical systems may be considered from two different perspectives, namely systems analysis and systems design, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stavroudis ON (1972) The optics of rays, wavefronts, and caustics. Academic Press

    Google Scholar 

  2. Stavroudis ON (2006) The mathematics of geometrical and physical optics. Wiley-VCH Verlag

    Google Scholar 

  3. Pressley A (2001) Elementary differential geometry. The Springer Undergraduate Mathematics Series, p 123

    Google Scholar 

  4. Hoffnagle JA, Shealy DL (2011) Refracting the k-function: Stavroudis’s solution to the eikonal equation for multielement optical systems. J Opt Soc Am A: 28:1312–1321

    Article  ADS  Google Scholar 

  5. Shealy DL, Burkhard DG (1973) Caustic surfaces and irradiance for reflection and refraction from an ellipsoid, elliptic parabolic and elliptic cone. Appl Opt 12:2955–2959

    Article  ADS  Google Scholar 

  6. Shealy DL, Burkhard DG (1976) Caustic surface merit functions in optical design. J Opt Soc Am 66:1122

    Article  ADS  Google Scholar 

  7. Shealy DL (1976) Analytical illuminance and caustic surface calculations in geometrical optics. Appl Opt 15:2588–2596

    Article  ADS  Google Scholar 

  8. Shealy DL, Hoffnagle JA (2008) Wavefront and caustics of a plane wave refracted by an arbitrary surace. J Opt Soc Am A: 25:2370–2382

    Article  ADS  MathSciNet  Google Scholar 

  9. Kneisly JA II (1964) Local curvature of wavefronts in an optical system. J Opt Soc Am 54:229–235

    Article  ADS  MathSciNet  Google Scholar 

  10. Mitchell DP, Hanrahan P (1992) Illumination from curved reflectors. In: Computer Graphics, vol 26, in Proceedings of SIGGRAPH, pp 283–291

    Google Scholar 

  11. Smith WJ (2001) Modern optical engineering, 3rd edn. Edmund Industrial Optics, Barrington, N.J

    Google Scholar 

  12. Burkhard DG, Shealy DL (1981) Simplified formula for the illuminance in an optical system. Appl Opt 20:897–909

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Psang Dain Lin .

Appendices

Appendix 1

The explicit expression of \( {\partial } {}^{2}\uplambda_{\text{i}} /{\partial } \bar{\text{R}}_{{\text{i} - 1}}^{2} \) when a ray hits a flat boundary surface \( \bar{\text{r}}_{\text{i}} \) has the form (see Eq. (7.5))

$$ \begin{aligned} \frac{{{\partial } {}^{2}\uplambda_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}}^{2} }} & = \frac{1}{{\text{E}_{\text{i}}^{2} }}\frac{{{\partial } \text{E}_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i - 1}}} }} }}\frac{{{\partial } \text{D}_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }} + \frac{1}{{\text{E}_{\text{i}}^{2} }}\frac{{{\partial } \text{D}_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i - 1}}} }} }}\frac{{{\partial } \text{E}_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }} - \frac{{2\text{D}_{\text{i}} }}{{\text{E}_{\text{i}}^{3} }}\frac{{{\partial } \text{E}_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i - 1}}} }} }}\frac{{{\partial } \text{E}_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }} \\ & = \frac{1}{{\text{E}_{\text{i}}^{2} }}\left[ {\begin{array}{*{20}l} 0 \hfill & 0 \hfill & 0 \hfill & {\text{J}_{{\text{ix}}} \text{J}_{{\text{ix}}} } \hfill & {\text{J}_{{\text{ix}}} \text{J}_{{\text{iy}}} } \hfill & {\text{J}_{{\text{ix}}} \text{J}_{{\text{iz}}} } \hfill \\ {} \hfill & 0 \hfill & 0 \hfill & {\text{J}_{{\text{iy}}} \text{J}_{{\text{ix}}} } \hfill & {\text{J}_{{\text{iy}}} \text{J}_{{\text{iy}}} } \hfill & {\text{J}_{{\text{iy}}} \text{J}_{{\text{iz}}} } \hfill \\ {} \hfill & {} \hfill & 0 \hfill & {\text{J}_{{\text{iz}}} \text{J}_{{\text{ix}}} } \hfill & {\text{J}_{{\text{iz}}} \text{J}_{{\text{iy}}} } \hfill & {\text{J}_{{\text{iz}}} \text{J}_{{\text{iz}}} } \hfill \\ {} \hfill & {} \hfill & {} \hfill & { \, 0} \hfill & { \, 0} \hfill & { \, 0} \hfill \\ {} \hfill & {} \hfill & {\text{symm}.} \hfill & {} \hfill & { \, 0} \hfill & { \, 0} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill & { \, 0} \hfill \\ \end{array} } \right] \\ & \quad - \frac{{2\text{D}_{\text{i}} }}{{\text{E}_{\text{i}}^{3} }}\left[ {\begin{array}{*{20}l} 0 \hfill & 0 \hfill & 0 \hfill & { \, 0} \hfill & { \, 0} \hfill & { \, 0} \hfill \\ {} \hfill & 0 \hfill & 0 \hfill & { \, 0} \hfill & { \, 0} \hfill & { \, 0} \hfill \\ {} \hfill & {} \hfill & 0 \hfill & { \, 0} \hfill & { \, 0} \hfill & { \, 0} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {\text{J}_{{\text{ix}}} \text{J}_{{\text{ix}}} } \hfill & {\text{J}_{{\text{ix}}} \text{J}_{{\text{iy}}} } \hfill & {\text{J}_{{\text{ix}}} \text{J}_{{\text{iz}}} } \hfill \\ {} \hfill & {} \hfill & {\text{symm}.} \hfill & {} \hfill & {\text{J}_{{\text{iy}}} \text{J}_{{\text{iy}}} } \hfill & {\text{J}_{{\text{iy}}} \text{J}_{{\text{iz}}} } \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill & {\text{J}_{{\text{iz}}} \text{J}_{{\text{iz}}} } \hfill \\ \end{array} } \right]. \\ \end{aligned} $$
(15.60)

When \( \bar{\mathcal{{\ell} }}_{\text{i}} \) is the unit directional vector of the reflected ray at \( \bar{\text{r}}_{\text{i}} \), \( {\partial } {}^{2}\bar{{\ell} }_{\text{i}} /{\partial } \bar{\text{R}}_{{\text{i} - 1}}^{2} \) is given by

$$ \frac{{{\partial } {}^{2}\bar{{\ell} }_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - \text{1}}}^{\text{2}} }} = \bar{0}_{4 \times 6 \times 6} . $$
(15.61)

When \( \bar{\mathcal{{\ell} }}_{\text{i}} \) is the unit directional vector of the refracted ray at \( \bar{\text{r}}_{\text{i}} \), \( {\partial } {}^{2}\bar{{\ell} }_{\text{i}} /{\partial } \bar{\text{R}}_{{\text{i} - \text{1}}}^{\text{2}} \) can be obtained by differentiating Eq. (7.10), to give

$$ \frac{{{\partial } {}^{2}\bar{{\ell} }_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - \text{1}}}^{\text{2}} }} = \left[ {\begin{array}{*{20}c} {{\partial } {}^{2}{\ell}_{{\text{ix}}} /{\partial } \bar{\text{R}}_{{\text{i} - \text{1}}}^{\text{2}} } \\ {{\partial } {}^{2}{\ell}_{{\text{iy}}} /{\partial } \bar{\text{R}}_{{\text{i} - \text{1}}}^{\text{2}} } \\ {{\partial } {}^{2}{\ell}_{{\text{iz}}} /{\partial } \bar{\text{R}}_{{\text{i} - \text{1}}}^{\text{2}} } \\ {\bar{0}} \\ \end{array} } \right], $$
(15.62)

where

$$ \frac{{{\partial } {}^{2}{\ell}_{{\text{ix}}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - \text{1}}}^{\text{2}} }} = \frac{{\text{s}_{\text{i}} \text{N}_{\text{i}}^{2} (1 - \text{N}_{\text{i}}^{2} )\text{J}_{{\text{ix}}} }}{{\sqrt {\left( {1 - \text{N}_{\text{i}}^{2} + \text{N}_{\text{i}}^{2} \text{E}_{\text{i}}^{2} } \right)^{3} } }}\left[ {\begin{array}{*{20}l} 0 \hfill & 0 \hfill & 0 \hfill & { \, 0} \hfill & { \, 0} \hfill & { \, 0} \hfill \\ {} \hfill & 0 \hfill & 0 \hfill & { \, 0} \hfill & { \, 0} \hfill & { \, 0} \hfill \\ {} \hfill & {} \hfill & 0 \hfill & { \, 0} \hfill & { \, 0} \hfill & { \, 0} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {\text{J}_{{\text{ix}}} \text{J}_{{\text{ix}}} } \hfill & {\text{J}_{{\text{ix}}} \text{J}_{{\text{iy}}} } \hfill & {\text{J}_{{\text{ix}}} \text{J}_{{\text{iz}}} } \hfill \\ {} \hfill & {\text{symm}.} \hfill & {} \hfill & {} \hfill & {\text{J}_{{\text{iy}}} \text{J}_{{\text{iy}}} } \hfill & {\text{J}_{{\text{iy}}} \text{J}_{{\text{iz}}} } \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill & {\text{J}_{{\text{iz}}} \text{J}_{{\text{iz}}} } \hfill \\ \end{array} } \right], $$
(15.63)
$$ \frac{{{\partial } {}^{2}{\ell}_{{\text{iy}}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - \text{1}}}^{\text{2}} }} = \frac{{\text{s}_{\text{i}} \text{N}_{\text{i}}^{2} (1 - \text{N}_{\text{i}}^{2} )\text{J}_{{\text{iy}}} }}{{\sqrt {\left( {1 - \text{N}_{\text{i}}^{2} + \text{N}_{\text{i}}^{2} \text{E}_{\text{i}}^{2} } \right)^{3} } }}\left[ {\begin{array}{*{20}l} 0 \hfill & 0 \hfill & 0 \hfill & { \, 0} \hfill & { \, 0} \hfill & { \, 0} \hfill \\ {} \hfill & 0 \hfill & 0 \hfill & { \, 0} \hfill & { \, 0} \hfill & { \, 0} \hfill \\ {} \hfill & {} \hfill & 0 \hfill & { \, 0} \hfill & { \, 0} \hfill & { \, 0} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {\text{J}_{{\text{ix}}} \text{J}_{{\text{ix}}} } \hfill & {\text{J}_{{\text{ix}}} \text{J}_{{\text{iy}}} } \hfill & {\text{J}_{{\text{ix}}} \text{J}_{{\text{iz}}} } \hfill \\ {} \hfill & {\text{symm}.} \hfill & {} \hfill & {} \hfill & {\text{J}_{{\text{iy}}} \text{J}_{{\text{iy}}} } \hfill & {\text{J}_{{\text{iy}}} \text{J}_{{\text{iz}}} } \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill & {\text{J}_{{\text{iz}}} \text{J}_{{\text{iz}}} } \hfill \\ \end{array} } \right], $$
(15.64)
$$ \frac{{{\partial } {}^{2}{\ell}_{{\text{iz}}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - \text{1}}}^{\text{2}} }} = \frac{{\text{s}_{\text{i}} \text{N}_{\text{i}}^{2} (1 - \text{N}_{\text{i}}^{2} )\text{J}_{{\text{iz}}} }}{{\sqrt {\left( {1 - \text{N}_{\text{i}}^{2} + \text{N}_{\text{i}}^{2} \text{E}_{\text{i}}^{2} } \right)^{3} } }}\left[ {\begin{array}{*{20}l} 0 \hfill & 0 \hfill & 0 \hfill & { \, 0} \hfill & { \, 0} \hfill & { \, 0} \hfill \\ {} \hfill & 0 \hfill & 0 \hfill & { \, 0} \hfill & { \, 0} \hfill & { \, 0} \hfill \\ {} \hfill & {} \hfill & 0 \hfill & { \, 0} \hfill & { \, 0} \hfill & { \, 0} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {\text{J}_{{\text{ix}}} \text{J}_{{\text{ix}}} } \hfill & {\text{J}_{{\text{ix}}} \text{J}_{{\text{iy}}} } \hfill & {\text{J}_{{\text{ix}}} \text{J}_{{\text{iz}}} } \hfill \\ {} \hfill & {\text{symm}.} \hfill & {} \hfill & {} \hfill & {\text{J}_{{\text{iy}}} \text{J}_{{\text{iy}}} } \hfill & {\text{J}_{{\text{iy}}} \text{J}_{{\text{iz}}} } \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill & {\text{J}_{{\text{iz}}} \text{J}_{{\text{iz}}} } \hfill \\ \end{array} } \right]. $$
(15.65)

Appendix 2

The Hessian matrix \( {\partial }^{2} {{\bar{\text{R}}}}_{\text{i}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} \) of the reflected/refracted ray \( \bar{\text{R}}_{\text{i}} = \left[ {\begin{array}{*{20}c} {\bar{\text{P}}_{\text{i}} } & {\bar{{\ell} }_{\text{i}} } \\ \end{array} } \right]^{\text{T}} \) at a spherical boundary surface \( \bar{\text{r}}_{\text{i}} \) with respect to the incoming ray \( {{\bar{\text{R}}}}_{{\text{i} - 1}} \) is composed of Eqs. (15.6), (15.10) and (15.11). However, the following terms are required before \( {\partial }^{2} {{\bar{\text{R}}}}_{\text{i}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} \) can be determined.

  1. (1)

    Determination of \( {\partial }^{2}\upsigma_{\text{i}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} \), \( {\partial }^{2}\uprho_{\text{i}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} \) and \( {\partial }^{2}\uptau_{\text{i}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} \):

    Differentiating Eq. (7.57) of Appendix 1 in Chap. 7 with respect to incoming ray \( \bar{\text{R}}_{{\text{i} - 1}} \) yields

    $$ \frac{{{\partial }^{2} {{\bar{\text{P}}}}_{\text{i}} }}{{{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} }} = {}^{0}\bar{\text{A}}_{\text{i}} \left[ {\begin{array}{*{20}c} {{\partial }^{2}\upsigma_{\text{i}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} } \\ {{\partial }^{2}\uprho_{\text{i}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} } \\ {{\partial }^{2}\uptau_{\text{i}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} } \\ {\bar{0}} \\ \end{array} } \right], $$
    (15.66)

    where \( {\partial } {}^{2}\bar{\text{P}}_{\text{i}} /{\partial } \bar{\text{R}}_{{\text{i} - \text{1}}}^{\text{2}} \) is given in Eq. (15.6). The terms \( {\partial } {}^{2}\upsigma_{\text{i}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} \), \( {\partial } {}^{2}\uprho_{\text{i}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} \) and \( {\partial } {}^{2}\uptau_{\text{i}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} \) in Eq. (15.66) can then be obtained as

    $$ \left[ {\begin{array}{*{20}c} {{\partial }^{2}\upsigma_{\text{i}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} \, } \\ {{\partial }^{2}\uprho_{\text{i}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} } \\ {{\partial }^{2}\uptau_{\text{i}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} } \\ {\bar{0}} \\ \end{array} } \right] = \left( {{}^{0}\bar{\text{A}}_{\text{i}} } \right)^{ - 1} \, \frac{{{\partial }^{2} {{\bar{\text{P}}}}_{\text{i}} }}{{{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} }}. $$
    (15.67)
  2. (2)

    Determination of \( {\partial } {}^{2}\upalpha_{\text{i}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} \) and \( {\partial } {}^{2}\upbeta_{\text{i}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} \):

    \( {\partial } {}^{2}\upalpha_{\text{i}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} \) can be obtained by differentiating Eq. (7.59) of Appendix 1 in Chap. 7 with respect to \( \bar{\text{R}}_{{\text{i} - 1}} \), to give

    $$ \begin{aligned} \frac{{{\partial } {}^{2}\upalpha_{\text{i}} }}{{{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} }} & = \frac{1}{{\upsigma_{\text{i}}^{ 2} +\uprho_{\text{i}}^{ 2} }}\left( {\frac{{{\partial }\upsigma_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }}\frac{{{\partial }\uprho_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }} +\upsigma_{\text{i}} \frac{{{\partial } {}^{2}\uprho_{\text{i}} }}{{{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} }} - \frac{{{\partial }\uprho_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }}\frac{{{\partial }\upsigma_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }} -\uprho_{\text{i}} \frac{{{\partial } {}^{2}\upsigma_{\text{i}} }}{{{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} }}} \right) \\ & \quad - \frac{2}{{\left( {\upsigma_{\text{i}}^{ 2} +\uprho_{\text{i}}^{ 2} } \right)^{2} }}\left( {\upsigma_{\text{i}} \frac{{{\partial }\upsigma_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }} +\uprho_{\text{i}} \frac{{{\partial }\uprho_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }}} \right)\left( {\upsigma_{\text{i}} \frac{{{\partial }\uprho_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }} -\uprho_{\text{i}} \frac{{{\partial }\upsigma_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }}} \right). \\ \end{aligned} $$
    (15.68)

    Similarly, \( {\partial } {}^{2}\upbeta_{\text{i}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} \) can be determined by differentiating Eq. (7.60) of Appendix 1 in Chap. 7 with respect to \( \bar{\text{R}}_{{\text{i} - 1}} \), to give

    $$ \begin{aligned} \frac{{{\partial }^{2}\upbeta_{\text{i}} }}{{{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} }} & = \frac{{\sqrt {\left( {\upsigma_{\text{i}}^{\text{2}} +\uprho_{\text{i}}^{2} } \right)} }}{{(\upsigma_{\text{i}}^{\text{2}} +\uprho_{\text{i}}^{2} +\uptau_{\text{i}}^{2} )}}\frac{{{\partial }^{2}\uptau_{\text{i}} }}{{{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} }} + \frac{1}{{(\upsigma_{\text{i}}^{\text{2}} +\uprho_{\text{i}}^{2} +\uptau_{\text{i}}^{2} )\sqrt {\left( {\upsigma_{\text{i}}^{\text{2}} +\uprho_{\text{i}}^{2} } \right)} }}\left( {\upsigma_{\text{i}} \frac{{{\partial }\upsigma_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }} +\uprho_{\text{i}} \frac{{{\partial }\uprho_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }}} \right)\frac{{{\partial }\uptau_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }} \\ & \quad - \frac{{2 \, \sqrt {\left( {\upsigma_{\text{i}}^{\text{2}} +\uprho_{\text{i}}^{2} } \right)} }}{{(\upsigma_{\text{i}}^{\text{2}} +\uprho_{\text{i}}^{2} +\uptau_{\text{i}}^{2} )^{2} }}\left( {\upsigma_{\text{i}} \frac{{{\partial }\upsigma_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }} +\uprho_{\text{i}} \frac{{{\partial }\uprho_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }} +\uptau_{\text{i}} \frac{{{\partial }\uptau_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }}} \right)\frac{{{\partial }\uptau_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }} \\ & \quad - \frac{1}{{(\upsigma_{\text{i}}^{\text{2}} +\uprho_{\text{i}}^{2} +\uptau_{\text{i}}^{2} )\sqrt {\left( {\upsigma_{\text{i}}^{\text{2}} +\uprho_{\text{i}}^{2} } \right)} }}\frac{{{\partial }\uptau_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }}\left( {\upsigma_{\text{i}} \frac{{{\partial }\upsigma_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }} +\uprho_{\text{i}} \frac{{{\partial }\uprho_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }}} \right) \\ & \quad - \frac{{\uptau_{\text{i}} }}{{(\upsigma_{\text{i}}^{\text{2}} +\uprho_{\text{i}}^{2} +\uptau_{\text{i}}^{2} )\sqrt {\left( {\upsigma_{\text{i}}^{\text{2}} +\uprho_{\text{i}}^{2} } \right)} }}\left( {\frac{{{\partial }\upsigma_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }}\frac{{{\partial }\upsigma_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }} +\upsigma_{\text{i}} \frac{{{\partial }^{2}\upsigma_{\text{i}} }}{{{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} }} + \frac{{{\partial }\uprho_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }}\frac{{{\partial }\uprho_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }} +\uprho_{\text{i}} \frac{{{\partial }^{2}\uprho_{\text{i}} }}{{{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} }}} \right) \\ & \quad + \frac{{2\uptau_{\text{i}} }}{{(\upsigma_{\text{i}}^{\text{2}} +\uprho_{\text{i}}^{2} +\uptau_{\text{i}}^{2} )^{2} \sqrt {\left( {\upsigma_{\text{i}}^{\text{2}} +\uprho_{\text{i}}^{2} } \right)} }}\left( {\upsigma_{\text{i}} \frac{{{\partial }\upsigma_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }} +\uprho_{\text{i}} \frac{{{\partial }\uprho_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }} +\uptau_{\text{i}} \frac{{{\partial }\uptau_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }}} \right)\left( {\upsigma_{\text{i}} \frac{{{\partial }\upsigma_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }} +\uprho_{\text{i}} \frac{{{\partial }\uprho_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }}} \right) \\ & \quad + \frac{{\uptau_{\text{i}} }}{{(\upsigma_{\text{i}}^{\text{2}} +\uprho_{\text{i}}^{2} +\uptau_{\text{i}}^{2} )\left( {\upsigma_{\text{i}}^{\text{2}} +\uprho_{\text{i}}^{2} } \right)^{3/2} }}\left( {\upsigma_{\text{i}} \frac{{{\partial }\upsigma_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }} +\uprho_{\text{i}} \frac{{{\partial }\uprho_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }}} \right)\left( {\upsigma_{\text{i}} \frac{{{\partial }\upsigma_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }} +\uprho_{\text{i}} \frac{{{\partial }\uprho_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }}} \right). \\ \end{aligned} $$
    (15.69)
  3. (3)

    Determination of \( {\partial } {}^{2}\bar{\text{n}}_{\text{i}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} \):

    One approach to compute \( {\partial } {}^{2}\bar{\text{n}}_{\text{i}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} \) is to differentiate Eq. (7.61) of Appendix 1 in Chap. 7 with respect to \( \bar{\text{R}}_{{\text{i} - 1}} \), to give

    $$ \frac{{{\partial } {}^{2}\bar{\text{n}}_{\text{i}} }}{{{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} }} = \left[ {\begin{array}{*{20}c} {{\partial } {}^{2}\text{n}_{{\text{ix}}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} } \\ {{\partial } {}^{2}\text{n}_{{\text{iy}}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} } \\ {{\partial } {}^{2}\text{n}_{{\text{iz}}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} } \\ {\bar{0}} \\ \end{array} } \right] = {}^{0}\bar{\text{A}}_{\text{i}} \frac{{{\partial } {}^{2}({}^{\text{i}}\bar{\text{n}}_{\text{i}} )}}{{{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} }}, $$
    (15.70)

    where \( {\partial } {}^{2}({}^{\text{i}}\bar{\text{n}}_{\text{i}} )/{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} \) is obtained by differentiating Eq. (7.62) of Appendix 1 in Chap. 7 with respect to \( \bar{\text{R}}_{{\text{i} - 1}} \), to give

    $$ \begin{aligned} \frac{{{\partial } {}^{2}({}^{\text{i}}\bar{\text{n}}_{\text{i}} )}}{{{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} }} & = \text{s}_{\text{i}} \left[ {\begin{array}{*{20}c} { - \text{S}\upbeta_{\text{i}} \text{C}\upalpha_{\text{i}} } \\ { - \text{S}\upbeta_{\text{i}} \text{S}\upalpha_{\text{i}} } \\ {\text{C}\upbeta_{\text{i}} } \\ 0 \\ \end{array} } \right]\frac{{{\partial } {}^{2}\upbeta_{\text{i}} }}{{{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} }} + \text{s}_{\text{i}} \left[ {\begin{array}{*{20}c} { - \text{C}\upbeta_{\text{i}} \text{S}\upalpha_{\text{i}} } \\ {\text{C}\upbeta_{\text{i}} \text{C}\upalpha_{\text{i}} } \\ 0 \\ 0 \\ \end{array} } \right]\frac{{{\partial } {}^{2}\upalpha_{\text{i}} }}{{{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} }} + \text{s}_{\text{i}} \left[ {\begin{array}{*{20}c} { - \text{C}\upbeta_{\text{i}} \text{C}\upalpha_{\text{i}} } \\ { - \text{C}\upbeta_{\text{i}} \text{S}\upalpha_{\text{i}} } \\ { - \text{S}\upbeta_{\text{i}} } \\ 0 \\ \end{array} } \right]\frac{{{\partial }\upbeta_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }}\frac{{{\partial }\upbeta_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }} \\ & \quad + \text{s}_{\text{i}} \left[ {\begin{array}{*{20}c} {\text{S}\upbeta_{\text{i}} \text{S}\upalpha_{\text{i}} } \\ { - \text{S}\upbeta_{\text{i}} \text{C}\upalpha_{\text{i}} } \\ 0 \\ 0 \\ \end{array} } \right]\frac{{{\partial }\upbeta_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }}\frac{{{\partial }\upalpha_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }} + \text{s}_{\text{i}} \left[ {\begin{array}{*{20}c} {\text{S}\upbeta_{\text{i}} \text{S}\upalpha_{\text{i}} } \\ { - \text{S}\upbeta_{\text{i}} \text{C}\upalpha_{\text{i}} } \\ 0 \\ 0 \\ \end{array} } \right]\frac{{{\partial }\upalpha_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }}\frac{{{\partial }\upbeta_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }} \\ & \quad + \text{s}_{\text{i}} \left[ {\begin{array}{*{20}c} { - \text{C}\upbeta_{\text{i}} \text{C}\upalpha_{\text{i}} } \\ { - \text{C}\upbeta_{\text{i}} \text{S}\upalpha_{\text{i}} } \\ 0 \\ 0 \\ \end{array} } \right]\frac{{{\partial }\upalpha_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }}\frac{{{\partial }\upalpha_{\text{i}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }}. \\ \end{aligned} $$
    (15.71)
  4. (4)

    Determination of \( {\partial } {}^{2}(\text{C}\uptheta_{\text{i}} )/{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} \):

    The term \( {\partial } {}^{2}(\text{C}\uptheta_{\text{i}} )/{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} \) is computed from Eq. (7.63) of Appendix 1 in Chap. 7 by noting that \( {\partial } {}^{2}{\ell}_{{\text{i - 1x}}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} = {\partial } {}^{2}{\ell}_{{\text{i - 1y}}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} = {\partial } {}^{2}{\ell}_{{\text{i - 1z}}} /{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} = \bar{0} \), to give

    $$ \begin{aligned} \frac{{{\partial } {}^{2}(\text{C}\uptheta_{\text{i}} )}}{{{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} }} & = - \left( {{\ell}_{{\text{i - 1x}}} \frac{{{\partial } {}^{2}\text{n}_{{\text{ix}}} }}{{{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} }} + {\ell}_{{\text{i - 1y}}} \frac{{{\partial } {}^{2}\text{n}_{{\text{iy}}} }}{{{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} }} + {\ell}_{{\text{i - 1z}}} \frac{{{\partial } {}^{2}\text{n}_{{\text{iz}}} }}{{{\partial } {{\bar{\text{R}}}}_{{\text{i} - 1}}^{ 2} }}} \right) \\ & \quad - \left( {\frac{{{\partial } {\ell}_{{\text{i - 1x}}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }}\frac{{{\partial } \text{n}_{{\text{ix}}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }} + \frac{{{\partial } {\ell}_{{\text{i - 1y}}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }}\frac{{{\partial } \text{n}_{{\text{iy}}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }} + \frac{{{\partial } {\ell}_{{\text{i - 1z}}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }}\frac{{{\partial } \text{n}_{{\text{iz}}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }}} \right) \, \\ & \quad - \left( {\frac{{{\partial } {\ell}_{{\text{i - 1x}}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }}\frac{{{\partial } \text{n}_{{\text{ix}}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }} + \frac{{{\partial } {\ell}_{{\text{i - 1y}}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }}\frac{{{\partial } \text{n}_{{\text{iy}}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }} + \frac{{{\partial } {\ell}_{{\text{i - 1z}}} }}{{{\partial } \bar{\text{R}}_{{\text{i} - 1}} }}\frac{{{\partial } \text{n}_{{\text{iz}}} }}{{{\partial } \bar{\text{R}}_{{\underline{{\text{i} - 1}} }} }}} \right) .\\ \end{aligned} $$
    (15.72)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Lin, P.D. (2017). Wavefront Aberration and Wavefront Shape. In: Advanced Geometrical Optics. Progress in Optical Science and Photonics, vol 4. Springer, Singapore. https://doi.org/10.1007/978-981-10-2299-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2299-9_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2298-2

  • Online ISBN: 978-981-10-2299-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics