Skip to main content

An Introduction to All-Optical Quantum Controlled-NOT Gates

  • Conference paper
  • First Online:
Book cover Advanced Computer Architecture (ACA 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 626))

Included in the following conference series:

Abstract

Quantum computer promises to outperform classical computer fundamentally, due to its quantum superposition. Any operations to N qubits can be decomposed into several single-qubit operations and two-qubit controlled-NOT (CNOT) operations in theory. Linear optical quantum computing (LOQC) is one of the most prominent physical quantum systems, which has the advantage of long coherent time and convenience in implementing single qubit operations. However, the realization of two-qubit CNOT gate is the greatest challenge for LOQC, because two photons cannot directly interact with each other by nature. KLM protocol proves the feasibility of LOQC and spurs quantity of research on schematic design and experimental demonstration of CNOT gates by using linear quantum optics system. These researches are very important and nontrivial for LOQC, and this paper gives an overview of different schemes of the proposed CNOT gates and the experimental demonstration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barz, S., Kassal, I., Ringbauer, M., Lipp, Y.O., Dakic, B., Aspuruguzik, A., Walther, P.: Solving systems of linear equations on a quantum computer (2013). arXiv:1302.1210v1

  2. Cai, X.D., Weedbrook, C., Su, Z.E., Chen, M.C., Gu, M., Zhu, M.J., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Experimental quantum computing to solve systems of linear equations. Phys. Rev. Lett. 110(23), 1983–1988 (2013)

    Article  Google Scholar 

  3. Ding, S., Maslennikov, G., Hablutzel, R., Loh, H., Matsukevich, D.: A quantum parametric oscillator with trapped ions (2015). arXiv:1512.01670v1

  4. Gasparoni, S., Pan, J.W., Walther, P., Rudolph, T., Zeilinger, A.: Realization of a photonic controlled-not gate sufficient for quantum computation. Phys. Rev. Lett. 93(2), 020504 (2004)

    Article  Google Scholar 

  5. Harrow, A.: A quantum algorithm for solving linear systems of equations. Phys. Rev. Lett. 103(10), 150502 (2008)

    MathSciNet  Google Scholar 

  6. Hofmann, H.F., Takeuchi, S.: Quantum phase gate for photonic qubits using only beam splitters and postselection. Phys. Rev. A 66(2), 207–212 (2001)

    Google Scholar 

  7. Kiesel, N., Schmid, C., Weber, U., Ursin, R., Weinfurter, H.: Linear optics controlled-phase gate made simple. Phys. Rev. Lett. 95(21), 210505 (2005)

    Article  Google Scholar 

  8. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46–52 (2001)

    Article  MATH  Google Scholar 

  9. Kok, P., Lee, H., Dowling, J.P.: Single-photon quantum nondemolition detectors constructed with linear optics and projective measurements. Phys. Rev. A 66(6), 317–322 (2002)

    Article  Google Scholar 

  10. Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79(1), 135–174 (2007)

    Article  Google Scholar 

  11. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464(7285), 45–53 (2010)

    Article  Google Scholar 

  12. Lahaye, M.D., Rouxinol, F., Hao, Y., Shim, S.B., Irish, E.K.: Superconducting circuitry for quantum electromechanical systems. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 9500 (2015)

    Google Scholar 

  13. Langford, N.K., Weinhold, T.J., Prevedel, R., Resch, K.J., Gilchrist, A., O’Brien, J.L., Pryde, G.J., White, A.G.: Demonstration of a simple entangling optical gate and its use in bell-state analysis. Phys. Rev. Lett. 95(21), 210504 (2005)

    Article  Google Scholar 

  14. Lipp, Y.O.: Experimental realization of an interferometric quantum circuit to increase the computational depth. Ph.D. thesis, University of Vienna, Vienna (2011)

    Google Scholar 

  15. Lu, C.Y., Browne, D.E., Yang, T., Pan, J.W.: Demonstration of a compiled version of shor’s quantum factoring algorithm using photonic qubits. Phys. Rev. Lett. 99(25), 250504 (2007)

    Article  Google Scholar 

  16. Murray, E., Ellis, D.P., Meany, T., Floether, F.F., Lee, J.P., Griffiths, J., Jones, G.A.C., Farrer, I., Ritchie, D.A., Bennett, A.J., et al.: Quantum photonics hybrid integration platform. Appl. Phys. Lett. 107(17), 171108 (2015)

    Article  Google Scholar 

  17. Nielsen, M.A., Chuang, I.L., Grover, L.K.: Quantum computation and quantum information. Am. J. Phys. 70(5), 558–559 (2012)

    Article  Google Scholar 

  18. O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426(6964), 26–47 (2003)

    Google Scholar 

  19. O’Brien, J.L.: Optical quantum computing. Science 318(5856), 67–70 (2008)

    Google Scholar 

  20. Okamoto, R., Hofmann, H.F., Takeuchi, S., Sasaki, K.: Demonstration of an optical quantum controlled-NOT gate without path interference. Phys. Rev. Lett. 95(21), 210506 (2005)

    Article  Google Scholar 

  21. Pittman, T.B., Fitch, M.J., Jacobs, B.C., Franson, J.D.: Experimental controlled-NOT logic gate for single photons in the coincidence basis. Phys. Rev. A 68(3), 032316 (2003)

    Article  Google Scholar 

  22. Pittman, T.B., Jacobs, B.C., Franson, J.D.: Demonstration of non-deterministic quantum logic operations using linear optical elements. Physics 88(25 Pt. 1), 222–223 (2001)

    Google Scholar 

  23. Pittman, T.B., Jacobs, B.C., Franson, J.D.: Probabilistic quantum logic operations using polarizing beam splitters. Phys. Rev. A 64(6), 656–656 (2001)

    Article  Google Scholar 

  24. Pittman, T.B., Jacobs, B.C., Franson, J.D.: Demonstration of feed-forward control for linear optics quantum computation. Phys. Rev. A 66(5), 357–364 (2002)

    Article  Google Scholar 

  25. Ralph, T.C., Langford, N.K., Bell, T.B., White, A.G.: Linear optical controlled-NOT gate in the coincidence basis. Phys. Rev. A 65(6), 440–444 (2002)

    Article  Google Scholar 

  26. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Singh, M., Pacheco, J.L., Perry, D., Garratt, E., Eyck, G.T., Bishop, N.C., Wendt, J.R., Manginell, R.P., Dominguez, J., Pluym, T.: Electrostatically defined silicon quantum dots with counted antimony donor implants. Appl. Phys. Lett. 108(6), 133–137 (2016)

    Article  Google Scholar 

  28. Taylor, R.L., Bentley, C.D.B., Pedernales, J.S., Lamata, L., Solano, E., Carvalho, A.R.R., Hope, J.J.: Fast gates allow large-scale quantum simulation with trapped ions (2016). arXiv:1601.00359v1

  29. Yang, X.J., Dou, Y., Hu, Q.F.: Progress and challenges in high performance computer technology. J. Comput. Sci. Technol. 21(5), 674–681 (2006)

    Article  Google Scholar 

  30. Yang, X., Liao, X., Xu, W., Song, J., Hu, Q., Su, J., Xiao, L., Lu, K., Dou, Q., Jiang, J.: Th-1: Chinas first petaflop supercomputer. Front. Comput. Sci. China 4(4), 445–455 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

He, H., Wu, J., Zhu, X. (2016). An Introduction to All-Optical Quantum Controlled-NOT Gates. In: Wu, J., Li, L. (eds) Advanced Computer Architecture. ACA 2016. Communications in Computer and Information Science, vol 626. Springer, Singapore. https://doi.org/10.1007/978-981-10-2209-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2209-8_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2208-1

  • Online ISBN: 978-981-10-2209-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics