Skip to main content

Advances in Nanotextile Finishes—An Approach Towards Sustainability

  • Chapter
  • First Online:
Textiles and Clothing Sustainability

Abstract

The chapter critically surveys the recent development trends in nanotextile finishes. Garments for special needs comprising of the functional aspects such as protective, medical treatment and care, have been considered through treatment with silver nanoparticles and have been related to sustainability. The micro- and nanoencapsulation of 100 % cotton denim fabric using three herbal extracts have been studied for antimicrobial efficiency, resulting in improvement in durability and good resistance to microbes over 30 industrial washes. The synthesis, characterization, and application of nanochitosan on cotton fabric has been studied, and the treated fabrics were evaluated for appearance, tensile, absorbency, stiffness, dyeing behaviour, wrinkle recovery, and antibacterial properties. Polyester fabric has been treated with nanosized dispersed dye particles without carrier, using ultrasound. This has been used for optimizing the parameters for the preparation of the printing paste. Attempt has been made to improve the handle property of jute polyester-blended yarn to produce union fabric with cotton yarn, intended for winter garment. The findings indicate that nano–micropolysiloxane-based finishing exhibit better improvement in the surface morphology, handling, and recovery property of the fabric as compared with other finishing combinations. Viscose fabrics have been modified to improve the attraction for metal oxides such as aluminium, zinc, or titanium in order to impart antimicrobial activity against two types of microorganisms. Nanosafe textile using the extracts of yellow papaya peel has been developed by extracellular synthesis of highly stable silver nanoparticles. Cotton fabrics with smart properties have been developed by functional finishing with stimuli-responsive nanogel using a combination of biopolymer and synthetic polymer in the synthesis of nanogel. The findings reveal that the application of nanogel as a smart finishing system affects the intrinsic cotton properties and also improves the common textile quality by providing new features of stimuli responsiveness. Above all these, the newer concepts of the nanotextile finishes discussed in the chapter promise enhancement in the existing properties of textile materials, increase durability, promote ecofriendliness and economy, and thus pave the way towards achieving better sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achwal, W. B. (2000). UV protection by textiles. Colourage, (4), 50.

    Google Scholar 

  • Achwal, W. B. (2003). Chitosan and its derivatives for textile finishing. Colourage, 50(8), 51–76.

    Google Scholar 

  • Aguilar, M. R., Elvira, C., Gallardo, A., Vazquez, B., & Roman, J. S. (2007). Smart polymers and their applications as biomaterials, III biomaterials. Topics in Tissue Engineering, 1.

    Google Scholar 

  • Ahmed, W. Y. W., & Loman, M. (1996). Journal of the Society of Dyers and Colourists, 112, 245.

    Google Scholar 

  • American Association of Textile Chemists and Colorists. (2003). AATCC Test Method 66-2003. New York, USA: American Association of Textile Chemists and Colorists.

    Google Scholar 

  • Ammayappan, L., & Moses, J. J. (2010). Functional finishing of jute. Current Chemical Research, 1(1), 19.

    Google Scholar 

  • Ammayappan, L., Moses, J., Asok, S., Raja, A. S. M., & Jimmy, K. C. L. (2011). Performance properties of multi-functional finishes on the enzyme-pretreated wool/cotton blend fabrics. Textile Color Finishing, 23(1), 1.

    Google Scholar 

  • Ammayappan, L., Nayak, L. K., & Ray, D. P. (2013). Value addition of jute textiles: present status and future perspectives. In K. K. Satapathy & P. K. Ganguly (Eds.), Diversification of the jute and allied fiber: Some recent developments (pp. 203–224). Kolkata: NIRJAFT.

    Google Scholar 

  • Anna, N., Jonas, E., Bengt, H., Pernilla, W., & IFP Research AB. (2007). The Nordic Textile Journal. ISSN 1404-2487, 90–99.

    Google Scholar 

  • Ansari, N., & Maleki, V. (2007). Principles and theories of physical testing of fibers, yarns and fabrics (pp. 159–218). Iran: Jihad Amirkabir University Publication Center.

    Google Scholar 

  • Bagherzadeh, R., Montazer, M., Latifi, M., Sheikhzadeh, M., & Sattari, M. (2007). Fibers and Polymers, 8, 386.

    Article  CAS  Google Scholar 

  • Bajaj, P. (2002). Finishing of textile materials. Journal of Applied Polymer Science, 83(202), 631.

    Google Scholar 

  • Barari, M., Majidi, R. F., & Madani, M. (2009). Preparation of nanocapsules via emulsifier-free miniemulsion polymerization. Nanoscience and Nanotechnology, 9, 4348.

    Google Scholar 

  • Bashari, A., Hemmati Nejad, N., & Pourjavadi, A. (2015). Effect of stimuli-responsive nano hydrogel finishing on cotton fabric properties. Indian Journal of Fibre & Textile Research, 40, 431.

    Google Scholar 

  • Bashari, A., Hemmati Nejad, N., & Pourjavadi, A. (2013a). Applications of stimuli responsive hydrogels: a textile engineering approach. Journal of the Textile Institute, 104(11), 1145.

    Google Scholar 

  • Bashari, A., Hemmati Nejad, N., & Pourjavadi, A. (2013b). Surface modification of cotton fabric with dual-responsive PNIPAAm/chitosan nano hydrogel. Polymers for Advanced Technologies, 24(9), 797.

    Google Scholar 

  • Bendak, A., Raslan, W., & Salama, M. (2008). Treatment of wool with metal salts and their effects on its properties. Journal of Natural Fibers, 5(3), 251.

    Google Scholar 

  • Benita, S. (ed.). (1996). Microencapsulation methods and industrial application. Drugs and the Pharmaceutical Sciences, (2nd ed., p. 158).

    Google Scholar 

  • Bhoomika, G. R., Ramesh, G. K., & Anita, M. A. (2007). Phyto-pharmacology of Achyranthes asera: a review. Pharmacognosy Review, 1, 143–149.

    Google Scholar 

  • Boonyo, W., Junginger, H. E., Waranuch, N., Polnok, A., & Pitaksuteepong, T. (2008). Journal of Metallurgy, Materials and Minerals, 18(2), 59.

    CAS  Google Scholar 

  • British Standards. (2012). BS 3356:1990. London: British Standards Institution.

    Google Scholar 

  • Broadbent, A. D. (2001). Basic principles of textile coloration (p. 322). England: Society of Dyers & Colorists, Thanet Press Ltd.

    Google Scholar 

  • Brojeswari, D., Apurba, D., Kothari, V. K., Fangueiro, R., & de Araújo, M. (2007). Moisture transmission through textiles, Part I: Processes in moisture transmission and the factors at play. AUTEX Research Journal, 7(3), 194.

    Google Scholar 

  • Campus, F., Bonhote, P., Grätzel, M., Heinen, S., & Walder, L. (1999). Solar Energy Materials and Solar Cells, 56, 281.

    Article  CAS  Google Scholar 

  • Chattopadhyay, D. P., & Inamdar, M. S. (2009). Studies on the properties of chitosan treated cotton fabric. Asian Dyer, 6(5), 47–53.

    Google Scholar 

  • Chattopadhyay, D. P., & Inamdar, M. S. (2010). Aqueous behaviour of chitosan. International Journal of Polymer Science, 2010, 1.

    Google Scholar 

  • Chattopadhyay, D., & Inamdar, M. S. (2013). Improvement in properties of cotton fabric through synthesized nano-chitosan application. Indian Journal of Fibres and Textile Research, 38, 14.

    Google Scholar 

  • Chattopadhyay, D. P., & Patel, B. H. (2009). Improvement in physical and dyeing properties of natural fibres through pretreatment with silver nanoparticles. Indian Journal of Fibre & Textile Research, 34, 368.

    Google Scholar 

  • Daoud, W. A., & Xin, J. H. (2004). Low temperature sol-gel processed photocatalytic titania coating. Journal of Sol-Gel Science and Technology, 29, 25.

    Google Scholar 

  • Daoud, W. A., Xin, J. H., & Zhang, Y.-H. (2005). Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities. Surface Science, 599(1), 69.

    Google Scholar 

  • Dastjerdi, R., Mojtahedi, M., Shoshtari, A., & Khosroshahi, A. (2010). Investigating the production and properties of Ag/TiO2/PP antibacterial nanocomposite filament yarns. Journal of the Textile Institute, 101(3), 204.

    Google Scholar 

  • Dastjerdi, R., Montazer, M., & Shahsavan, S. (2009). A new method to stabilize nanoparticles on textile surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 345(3), 202.

    Google Scholar 

  • Debnath, S., & Sengupta, S. (2009). Effect of linear density, twist and blend proportion on some physical properties of jute and hollow polyester blended yarn. Indian Journal of Fibre & Textile Research, 34(1), 11.

    Google Scholar 

  • Debnath, S., Sengupta, S., & Singh, U. S. (2007a). Properties of jute and hollow-polyester blended bulked yarn. Journal of Institution of Engineers (India) Textile Engineering Divison, 87(1), 11.

    Google Scholar 

  • Debnath, S., Sengupta, S., & Singh, U. S. (2007b). Comparative study on the physical properties of jute, jute-viscose and jute-polyester (hollow) blended yarns. Journal of Institution of Engineers (India) Textile Engineering Divison, 88(8), 5.

    Google Scholar 

  • Debnath, S., Sengupta, S., & Singh, P. (2011). Annual report 2010-11 (p. 17). Kolkata: NIRJAFT.

    Google Scholar 

  • Dhananjeyan, M., Mielczarski, E., Thampi, K., Buffat, P., Bensimon, M., Kulik, A., et al. (2001). Journal of Physical Chemistry B, 105, 12046.

    Article  CAS  Google Scholar 

  • Du, W.-D., Niu, S.-S., Xu, Y.-L., Xu, Z.-R., & Fan, C.-L. (2009). Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydrate Polymer, 385.

    Google Scholar 

  • Ebrahim, F. F. S., & Mansour, O. S. M. (2013). Using Nanomaterials treatments to improve the performance characteristics of garment groups with special needs. Journal of American Science, 9(11), 126–131.

    Google Scholar 

  • El-Molla, M. M., El-Khatib, E. M., El-Gammal, M. S., & Abdel-Fattah, S. H. (2011). Development of ecofriendly binders for pigment printing of all types of textile fabrics. Indian Journal of Fibre & Textile Research, 36(3), 266.

    Google Scholar 

  • El-Sayed, A. A., Dorgham, S. M., & Kantouch, A. (2012). Application of reactive salicylanilide to viscose fabrics as antibacterial and antifungus finishing. International Journal of Biological Macromolecules, 50(1), 273.

    Google Scholar 

  • El-Sayed, A. A., El Gabry, L., & Allam, O. (2010). Application of prepared waterborne polyurethane extended with chitosan to impart antibacterial properties to acrylic fabrics. Journal of Materials Science: Materials in Medicine, 21(2), 507.

    Google Scholar 

  • El-Sayeed, A. A., Salama, M., Sohad, M. D., & Kantouch, A. (2015). Modification of viscose fabrics to impart permanent antimicrobial activity. Indian Journal of Fibres and Textile Research, 40, 25.

    Google Scholar 

  • El-Tahlawy, K. F. (1999). Utilization of citric acid-chitosan-sodium hypophosphite system for effecting concurrent dyeing and finishing. Colourage, 46, 21.

    Google Scholar 

  • Enescu, D. (2008). Use of chitosan in surface modification of textile materials. Roumanian Biotechnological Letters, 13(6), 4037.

    CAS  Google Scholar 

  • Eom, S. I. (2001). Using chitosan as an antistatic finish for polyester fabric. AATCC Review, 1(3), 57.

    CAS  Google Scholar 

  • Fu, G., Vary, P. S., & Lin, C.-T. (2005). Anatase TiO2 Nanocomposites for Antimicrobial Coatings. Journal of Physical Chemistry B, 109(18), 8889.

    Google Scholar 

  • Fung, W., & Hardcastle, M. (2001). Textiles in automation engineering (p. 120). England: Woodhead Publications.

    Google Scholar 

  • Gao, Y., & Cranston, R. (2008). Recent advances in antimicrobial treatments of textiles. Textile Research Journal, 78(1), 60.

    Google Scholar 

  • Gaurav, K. (2005). Antimicrobial for textiles. Colourage, 52(9), 94.

    Google Scholar 

  • Giri Dev, V. R., Neelkandan, R., Sudha, N., Shamugasundaram, O. L., & Nadaraj, R. N. (2005). A material with wider applications. Textile Magazine, 83.

    Google Scholar 

  • Gokarneshan, N, Gopalakrishnan, P. P., & Jeyanthi, B. (2012). Influence of various nano finishes on antibacterial properties of fabrics. ISRN Nanomaterials, 1–8.

    Google Scholar 

  • Gokarneshan, N., Gopalakrishnan, P. P., & Jeyanthi, B. (2013). Nano finishing of textiles. New Delhi: Abhishek Publications.

    Google Scholar 

  • Gorensek, M., & Recel, P. (2007). Nanosilver functionalized cotton fabric. Textile Research Journal, 77(3), 138.

    Google Scholar 

  • Harish Prashant, K. V., & Tharanathan, R. N. (2007). Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends in Food Science and Technology, 18(3), 117.

    Google Scholar 

  • Harrocks, A. R., & Anand, A. (2000). Handbook of technical textiles (pp. 18, 192). England: Woodhead Publications.

    Google Scholar 

  • Hasebe, Y. (2001). AATCC Review, 1(11), 23.

    CAS  Google Scholar 

  • Hasebe, Y., Kuwahara, K., & Tokunaga, S. (2001). AATCC Review—American Association of Textile Chemists and Colorists, 1, 23.

    CAS  Google Scholar 

  • Hatiboglu, B. (2006). Mechanical properties of individual polymeric micro and nanofibers using atomic force microscopy (AFM). Ph.D. Dissertation, North Carolina. Available from www.lib.ncsu.edu/theses/available/etd-07062006-135651/unrestricted/etd.pdf

  • Hirano, S. (2003). Ullmann’s encyclopedia of industrial chemistry (Vol. 7, p. 679). Weinheim, Germany: Wiley-VCH.

    Google Scholar 

  • Holme, I. (2002). Microencapsulation of herbal extracts for microbial resistance in cotton fabrics. Textile Magazine, 4, 13.

    Google Scholar 

  • Hu, J., Meng, H., Li, G., & Ibekwe, S. I. (2012). Smart Materials and Structures, 21(5), 23.

    Article  Google Scholar 

  • Huang, K.-S., Sheu, Y.-R., & Chao, I.-C. (2009). Preparation and properties of nanochitosan. Polymer-Plastics Technology and Engineering, 48(12), 1239.

    Google Scholar 

  • Huang, W., Xing, Y., Yu, Y., Shang, S., & Dai, J. (2011). Enhanced washing durability of hydrophobic coating on cellulose fabric using polycarboxylic acids. Applied Surface Science, 257, 4443.

    Article  CAS  Google Scholar 

  • Huanga, Z. M., Zhangb, Y. Z., Kotakic, M., & Ramakrishnab, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(1), 2223–2253.

    Article  Google Scholar 

  • Inamdar, M. S., & Chattopadhyay, D. P. (2006). Chitosan and its versatile applications in textile processing. Man Made Textiles in India, 49(6), 212.

    Google Scholar 

  • Jocic, D., Tourrette, A., Glampedaki, P., & Warmoeskerken, M. M. C. G. (2009). Application of temperature and pH responsive micro hydrogels for functional finishing of cotton fabric. Materials Technology: Advanced Performance Materials, 24, 14–23.

    Article  CAS  Google Scholar 

  • Kantouch, A., & El-Sayed, A. A. (2008). Polyvinyl pyridine metal complex as permanent antimicrobial finishing for viscose fabric. International Journal of Biological Macromolecules, 43, 451.

    Article  CAS  Google Scholar 

  • Kantouch, A., El-Sayed, A. A., Salama, M., El-Kheir, A. A., & Mowafi, S. (2013). Salicylic acid and some of its derivatives as antibacterial agents for viscose fabric. International Journal of Biological Macromolecules, 62, 603.

    Article  CAS  Google Scholar 

  • Kean, T., Roth, S., & Thanou, M. (2005). Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. Journal of Controlled Release, 103(3), 643.

    Article  CAS  Google Scholar 

  • Ki, H. Y., Kim, J. H., Kwon, S. C., & Jeong, S. H. (2007). A study on multifunctional wool textiles treated with nano-sized silver. Journal of Materials Science, 42, 8020.

    Article  CAS  Google Scholar 

  • Kittinaovarut, S. (1998a). Polymerization-crosslinking fabric finishing, with pad-dry-cure, using nonformaldehyde BTCA/IA/AA combinations to impart durable press properties in cotton fabric. In Near environments. Radford: Radford University.

    Google Scholar 

  • Kittinaovarut, S. (1998b). Cure, using nonformaldehyde BTCA/IA/AA combinations to impart durable press properties. In Cotton fabric. Radford: Radford University.

    Google Scholar 

  • Knittel, D., & Schollmeyer, E. (2002). Permanent finishing of cotton with ionic carbohydrates and analysis of thin layers obtained. Melliand Textilber, 83, 15.

    Google Scholar 

  • Kundu, B. C. (1956). Jute—world’s foremost bast fibre. Botany, agronomy, diseases and pests. Economic Botany, 10, 103.

    Article  Google Scholar 

  • Lachapelle, J. M., & Maibach, H. I. (2009). Patch testing and prick testing: A practical guide official publication of the ICDRG. Berlin, Germany: Springer, 60.

    Google Scholar 

  • Ladhari, N., Baouab, M., Ben Dekhil, A., Bakhrouf, A., & Niquette, P. (2007). Antibacterial activity of quaternary ammonium salt grafted cotton. Journal of the Textile Institute, 98, 209.

    Google Scholar 

  • Lakshmanan, A., Debnath, S., & Sengupta, S. (2014). Effect of nano-polysiloxane based finishing on handle properties of jute blended fabric, Indian Journal of Fibres and Textile Research, 39, 425.

    Google Scholar 

  • Lee, K. W., Chung, Y. S., & Kim, J. P. (2001). Effect of ultrasonic on disperse dye particle size. Textile Research Journal, 71(5), 395.

    Google Scholar 

  • Lee, H. J., & Jeong, S. H. (2005). Bacteriostasis and skin innoxiousness of nanosize silver colloids on textile fabrics. Textile Research Journal, 75(7), 551.

    Google Scholar 

  • Lee, K. W., & Kim, J. P. (2001). Effect of ultrasonic on disperse dye particle size. Textile Research Journal, 71(5), 395.

    Article  CAS  Google Scholar 

  • Leslie, W. C. M. (1994). Textile printing (2nd ed., pp. 174, 175). London, UK: Society of Dyers & Colorist.

    Google Scholar 

  • Li, Q., Chen, S. L., & Jiang, W. C. (2007). Durability of nano ZnO antibacterial cotton fabric to sweat. Journal of Applied Polymer Science, 103(1), 412.

    Article  CAS  Google Scholar 

  • Liu, J.-K., Yang, X.-H., & Tian, X.-G. (2008). Preparation of silver/hydroxyapatite nanocomposite spheres. Powder Technology, 184(1), 21.

    Article  CAS  Google Scholar 

  • Lopez-Leon, T., Carvalho, E. L. S., Seijo, B., Ortega-Vinuesa, J. L., & Bastos-Gonzalez, D. (2005). Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behavior. Journal of Colloid and Interface Science, 283(2), 344.

    Google Scholar 

  • Loretz, B., & Bernkop, S. (2006). In vitro evaluation of chitosan-EDTA conjugate polyplexes as a nanoparticulate gene delivery system. AAPS Journal, 8(4), 756–764. (Art. no. 85).

    Google Scholar 

  • Matsukuma, D., Yamamoto, K., & Aoyagi, T. (2006). Stimuli-responsive properties of N-isopropylacrylamide-based ultrathin hydrogel films prepared by photo-cross-linking. Langmuir, 22(13), 5911.

    Article  CAS  Google Scholar 

  • Mekewi, M., El-Sayed, A. A., Amin, M., & Said, H. I. (2012). Imparting permanent antimicrobial onto viscose and acrylic fabrics. International Journal of Biological Macromolecules, 50, 1055.

    Article  CAS  Google Scholar 

  • Montazer, M., & Afjeh, M. G. (2007). Simultaneous X-linking and antimicrobial finishing of cotton fabric. Journal of Applied Polymer Science, 103(1), 178–185.

    Article  CAS  Google Scholar 

  • Muzzarelli, R. A. A. (1996). Chitin chemistry. In J. C. Salamone (Ed.), The polymeric materials encyclopedia (pp. 312–314). Boca Raton, FL, USA. CRC Press Inc.

    Google Scholar 

  • Nahed, S. E. A., & El-Shishtawy, R. M. (2010). Journal of Material Science, 45, 1143.

    Google Scholar 

  • Nakashima, T., Sakagami, Y., Ito, H., & Matsuo, M. (2001). Textile Research Journal, 71, 688.

    Article  CAS  Google Scholar 

  • Natarajan, V. (2002). Azadirachta indica in the treatment of dermatophytosis. Journal of Ecobiology, 14(3), 201.

    Google Scholar 

  • No, H. K., & Meyers, S. P. (1995). Preparation and characterization of chitin and chitosan: a review. Journal of Aquatic Food Product Technology, 4(2), 27.

    Article  CAS  Google Scholar 

  • Okay, O. (2010). General properties of hydrogels. In G. Gerlach & K.-F. Arndt (Eds.), Hydrogel sensors and actuators (pp. 1–14). Berlin: Springer.

    Google Scholar 

  • Oktem, T. (2003). Surface treatment of cotton fabrics with chitosan. Coloration Technology, 119(4), 241.

    Article  Google Scholar 

  • Osman, H., & Khairy, M. (2013). Optimization of polyester printing with disperse dye nanoparticles. Indian Journal of Fibres and Textile Research, 38, 202.

    CAS  Google Scholar 

  • Parikh, D., Fink, T., Rajasekharan, K., Sachinvala, N., Sawhney, A., Calamari, T. (2005). Comparative study of synergistic effects of antibiotics with triangular shaped silver nanoparticles, synthesized using UV-light irradiation, on Staphylococcus aureus and Pseudomonas aeruginosa. Textile Research Journal, 75, 134.

    Article  CAS  Google Scholar 

  • Parthasarathi, V. (2008). Nano technology adds value to textile finishing. Available from www.indiantextilejournal.com/articles, February 20, 2008.

  • Patel, J. K., & Jivani, N. P. (2009). Chitosan based nanoparticles in drug delivery. International Journal of Pharmaceutical Sciences Nanotechnology, 2(2), 517.

    CAS  Google Scholar 

  • Perelshtein, I., Applerot, G., Perkas, N., Guibert, G., Mikhailov, S., & Gedanken, A. (2008). Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology, 19, 245705.

    Article  Google Scholar 

  • Pujari, M. M., Kulkarni, M. S., & Kadole, P. V. (2010). Bombay to Goa Journey of the denim. Textile Review, 5(11), 7–9.

    Google Scholar 

  • Ren, X., Kou, L., Kocer, H. B., Zhu, C., Worley, S., Broughton, R., et al. (2008). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317, 711.

    Article  CAS  Google Scholar 

  • Rowell, R. M., Stout, H. P. (1998). Jute and kenaf. In M. Lewin & E. M. Pearce (Eds.), Handbook of fiber chemistry (pp. 465–504). New York: Marcel Dekker.

    Google Scholar 

  • Roy, D., Cambre, J. N., & Sumerlin, B. S. (2010). Future perspectives and recent advances in stimusli-responsive materials. Progress in Polymer Science, 35(1–2), 278.

    Google Scholar 

  • Salama, M., Bendak, A., & Moller, M. (2011). Industria Textila, 62, 320.

    CAS  Google Scholar 

  • Saligram, A. N., Shukla, S. R., & Mathur, M. (1993). Physico chemical aspects of textile coloration. Journal of Society of Dyers and Colorists, 109, 263.

    Article  CAS  Google Scholar 

  • Sanjay Vishwakarma, Text Rev, November (2010) 13.

    Google Scholar 

  • Sathianarayanan, M. P., Bhat, M. V., Kokale, S. S., & Walunj, V. E. (2011). Indian Journal of Fibre & Textile Research, 36, 234.

    CAS  Google Scholar 

  • Saville, B. P. (1999). The physical testing of textiles. London: Woodhead Publication Limited.

    Google Scholar 

  • Schindler, W. D., & Hauser, P. J. (2004). Chemical finishing of textiles (p. 51). Cambridge, England: Woodhead Publishing Limited.

    Google Scholar 

  • Shilpa, U. N. (2004). Journal of Text Association, 65, 219.

    Google Scholar 

  • Shin, Y., Yoo, D. I., & Min, K. (1999). Durable antibacterial finish on cotton fabric by using chitosan-based polymeric core-shell particles. Journal of Applied Polymer Science, 74, 2911.

    Article  CAS  Google Scholar 

  • Srikanth, S. (2010). Apparel Views, 60.

    Google Scholar 

  • Steele, R. (1962). Some fabric properties and their relation to crease proofing effects. Journal of the Textile Institute, 53(1), 7.

    Article  CAS  Google Scholar 

  • Subhash, A., & Sarkar Ajoy, K. (2010). Colourage, 57, 57.

    Google Scholar 

  • Sumithra, M., & Vasugi Raaja, N. (2012). Micro-encapsulation and nano-encapsulation of denim Fabrics with herbal extracts. Indian Journal of Fibres and Textile Research, 37, 321.

    Google Scholar 

  • Tan, E. P. S., & Lim, C. T. (2006). Mechanical characterization of nanofibers—A review. Composites Science and Technology, 66(1), 1102–1111.

    Google Scholar 

  • Tatiana, L., Jose, N., & Fernando, O. (2008). Proceedings of 4th International Textile, Clothing & Design Conference—Magic World of Textiles, Dubrovnik, Croatia, December 2008.

    Google Scholar 

  • Thies, C. (2005). Microencapsulation (4th ed., pp. 628–651). New York: Wiley.

    Google Scholar 

  • Thilagavathi, G., Bala, S. K., & Kannaian, T. (2007). Microencapsulation of herbal extracts for microbial resistance in healthcare textiles. Indian Journal of Fibre & Textile Research, 32, 351.

    CAS  Google Scholar 

  • Tiwari, S. K., & Gharia, M. M. (2003). Characterization of chitosan pastes and their application in textile printing. AATCC Review, 3(4), 17.

    CAS  Google Scholar 

  • Tong, Y., Tian, M., Xu, R., Hu, W., Yu, L., & Zhang, L. (2003). Fuhe Cailiao Xuebao (Acta Materiae Compositae Sinica (China), 20, 88.

    Google Scholar 

  • Trapani, A., Sitterberg, J., Bakowsky, U., & Kissel, T. (2009). The potential of glycol chitosan nanoparticles as carrier for low water soluble drugs. International Journal of Pharmaceutics, 375, 97.

    Article  CAS  Google Scholar 

  • Wong, Y. W. H., Yuen, C. W. M., Leung, M. Y. S., Ku, S. K. A., & Lam, H. L. I. (2006a). AUTEX Research Journal, 6(1), 1–8.

    Google Scholar 

  • Wong, Y., Yuen, C., Leung, M., Ku, S., & Lam, H. (2006b). Selected applications of nano technology in textiles. AUTEX Research Journal, 6, 1.

    Google Scholar 

  • Yang, J. M., Lin, H. T., Wu, T. H., & Chen, C. C. (2003). Wettability and antibacterial assessment of chitosan containing radiation-induced graft nonwoven fabric of polypropylene-g-acrylic acid. Journal of Applied Polymer Science, 90, 1331.

    Article  CAS  Google Scholar 

  • Yeo, S. Y., Lee, H. J., & Jeong, S. H. (2003). Antibacterial effect of nanosized silver colloidal solution on textile fabrics. Journal Materials Science, 38(10), 2199–2204.

    Article  Google Scholar 

  • Zhang, Z., Chen, L., Ji, J., Huang, V., & Chen, D. (2003). Antibacterial properties of cotton fabrics treated with chitosan. Textile Research Journal, 73(12), 1103.

    Article  CAS  Google Scholar 

  • Zhang, H., Wu, S., Tao, Y., Zang, L., & Su, Z. (2010). Preparation and in vitro characterization of chitosan nanoparticles. Journal of Nanomaterials, 151(2), 458–465.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Gokarneshan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Gokarneshan, N., Chandrasekar, P.T., Suvitha, L. (2017). Advances in Nanotextile Finishes—An Approach Towards Sustainability. In: Muthu, S. (eds) Textiles and Clothing Sustainability. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2188-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2188-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2187-9

  • Online ISBN: 978-981-10-2188-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics