Skip to main content

Insulin-like Growth Factor-1 and Its Related Signalling During Aging: Modulation by Dietary Restriction

  • Chapter
  • First Online:
Topics in Biomedical Gerontology

Abstract

Aging is characterized as the changes of several biological processes in an organism as a function of time. The most important system engaged during the aging process is the endocrine system. Insulin-like growth factor-1(IGF-1), a single chain polypeptide synthesized under the action of growth hormone (GH), regulates a variety of developmental and metabolic processes of an organism. The primary source of serum IGF-1 is the liver; however, it is also synthesized in other tissues where it functions as autocrine and paracrine hormone. It acts by binding to its cell surface receptor and amplifies its action by regulating downstream molecules like PI3K, Akt, SIRT, FOXO, NF-ĸB, thereby, forming a network of signalling pathways. The link of IGF-1 and its signalling pathway to the process of aging is of significant interest because it is involved in controlling various cellular processes that determine the lifespan of an organism. Dietary restriction (DR), an intervention where the intake of food is lessened but without causing any malnourishment, has been found to be an effective modulator of the IGF-1 signalling pathway. An outline of IGF-1 and its signalling pathway in aging process and how DR acts as a mediator of various players of the pathway that may enhance longevity in various model organisms will be illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler AS, Sinha S, Kawahara TLA, Zhang JY, Segal E, Chang HY (2007) Motif module map reveals enforcement of aging by continual NF-kB activity. Genes Dev 21:3244–3257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15:6541–6551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Regaiey KA, Masternak MM, Bonkowski M, Sun L, Bartke A (2005) Long-lived growth hormone receptor knockout mice: interaction of reduced insulin-like growth factor I/insulin signaling and caloric restriction. Endocrinology 146:851–860

    Article  CAS  PubMed  Google Scholar 

  • Aly KB, Pipkin JL, Hinson WG, Feuers RJ, Duffy PH, Lyncook L, Hart RW (1994) Chronic caloric restriction induces stress proteins in the hypothalamus of rats. Mech Ageing Dev 76:11–23

    Article  CAS  PubMed  Google Scholar 

  • Barthel A, Schmoll D, Unterman TG (2005) FoxO proteins in insulin action and metabolism. Trends Endocrin. Met. 16:183–189

    Article  CAS  Google Scholar 

  • Berdichevsky A, Viswanathan M, Horvitz HR, Guarente L (2006) C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 125:1165–1177

    Article  CAS  PubMed  Google Scholar 

  • Berelowitz M, Szabo M, Frohman LA (1981) Somatomedin-C mediates growth hormone negative feedback by effects on both hypothalamus and the pituitary. Science 212:1279–1281

    Article  CAS  PubMed  Google Scholar 

  • Bernard D, Gosselin K, Monte D, Vercamer C, Bouali F, Pourtier A, Vandenbunder B, Abbadie C (2004) Involvement of Rel/nuclear factor-kappaB transcription factors in keratinocyte senescence. Cancer Res 64:472–481

    Article  CAS  PubMed  Google Scholar 

  • Bowman TA, Ramakrishnan SK, Kaw M, Lee SJ, Patel PR, Golla VK, Bourey RE, Haram PM, Koch LG, Britton SL, Wisloff U, Lee AD, Najjar SM (2010) Caloric restriction reverses hepatic insulin resistance and steatosis in rats with low aerobic capacity. Endocrinology 151:5157–5164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breese CR, Ingram RL, Sonntag WE (1991) Influence of age and long-term dietary restriction on plasma insulin-like growth factor-I (IGF-1), IGF-1 gene expression, and IGF-1 binding-proteins. J Gerontol 46:B180–B187

    Article  CAS  PubMed  Google Scholar 

  • Brissenden JE, Ullrich A, Francke U (1984) Human chromosomal mapping of genes for insulin-like growth factors I and II and epidermal growth factor. Nature 310:781–784

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Bruno J, Easlon E, Lin SJ, Cheng HL, Alt FW, Guarente L (2008) Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev 22:1753–1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemmons DR (2007) Modifying IGF-1 activity: an approach to treat endocrine disorders, atherosclerosis and cancer. Nat Rev Drug Discov 6:821–833

    Article  CAS  PubMed  Google Scholar 

  • Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305:390–392

    Article  CAS  PubMed  Google Scholar 

  • Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927

    Article  CAS  PubMed  Google Scholar 

  • Dkhar P, Sharma R (2014) Late-onset dietary restriction modulates protein carbonylation and catalase in cerebral hemispheres of aged mice. Cell Mol Neurobiol 34:307–313

    Article  CAS  PubMed  Google Scholar 

  • Dupont J, Khan J, Qu BH, Metzler P, Helman L, LeRoith D (2001) Insulin and IGF-1 induce different pattern of gene expression in mouse fibroblast NIH-3T3 cells: identification by cDNA microarray analysis. Endocrinology 142:4969–4975

    Article  CAS  PubMed  Google Scholar 

  • Fadini GP, Ceolotto G, Pagnin E, de Kreutzenberg S, Avogaro A (2011) At the crossroads of longevity and metabolism: the metabolic syndrome and lifespan determinant pathways. Aging Cell 10:10–17

    Article  CAS  PubMed  Google Scholar 

  • Froesch ER, Schmid C, Schwander J, Zapf J (1985) Actions of insulin-like growth factors. Annu Rev Physiol 47:443–467

    Article  CAS  PubMed  Google Scholar 

  • Frye RA (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273:793–798

    Article  CAS  PubMed  Google Scholar 

  • Gauguin L, Delaine C, Alvino CL, McNeil KA, Wallace JC, Forbes BE (2008) Alanine scanning of a putative receptor binding surface of insulin-like growth factor-I. J Biol Chem 283:20821–20829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadem IKH, Sharma R (2015) Age- and tissue-dependent modulation of IGF-1/PI3K/Akt protein expression by dietary restriction in mice. Metab Res, Horm. doi:10.1055/s-0035-1559770

    Google Scholar 

  • Haigis MC, Guarente LP (2006) Mammalian sirtuins-emerging roles in physiology, aging, and calorie restriction. Genes Dev 20:2913–2921

    Article  CAS  PubMed  Google Scholar 

  • Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–186

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Tindall DJ (2007) Dynamic FoxO transcription factors. J Cell Sci 120:2479–2487

    Article  CAS  PubMed  Google Scholar 

  • Humbel RE (1984) Insulin-like growth factors, somatomedins, and multiplication stimulating activity: chemistry. In: Li CH (ed) Hormonal proteins and peptides, vol 12. Academic Press, Inc., New York, pp 57–79

    Google Scholar 

  • Hussain MA, Schmitz O, Christiansen JS, Zapf J, Froesch RE (1995) Metabolic effects of insulin-like growth factor-I: a focus on insulin sensitivity. Metabolis 144:108–112

    Article  Google Scholar 

  • Jung HJ, Suh Y (2015) Regulation of IGF-1 signalling by microRNAs. Front Genet. 5:472

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung KJ, Lee EK, Kim JY, Zou Y, Sung B, Heo HS, Kim MK, Lee J, Kim ND, Yu BP, Chung HY (2009) Effect of short term calorie restriction on pro-inflammatory NF-kB and AP-1 in aged rat kidney. Inflamm Res 58:143–150

    Article  CAS  PubMed  Google Scholar 

  • Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, Bar-Joseph Z, Cohen HY (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature 483:218–221

    Article  CAS  PubMed  Google Scholar 

  • Kenyon C (2011) The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Philos Trans R Soc Lond B Biol Sci 366:9–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512

    Article  CAS  PubMed  Google Scholar 

  • Kharbhih WJ, Sharma R (2014) Age-dependent increased expression and activity of inorganic pyrophosphatase in the liver of male mice and its further enhancement with short- and long-term dietary restriction. Biogerontology 15:81–86

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Jung KJ, Yu BP, Cho CG, Choi JS, Chung HY (2002) Modulation of redox-sensitive transcription factors by calorie restriction during aging. Mech Ageing Dev 123:1589–1595

    Article  CAS  PubMed  Google Scholar 

  • Libina N, Berman JR, Kenyon C (2003) Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115:489–502

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Hron JD, Peng SL (2004) Regulation of NF-kappaB, Th activation, and auto inflammation by the forkhead transcription factor Foxo3a. Immunity 21:203–213

    Article  CAS  PubMed  Google Scholar 

  • Longo VD, Fontana L (2010) Calorie restriction and cancer prevention: metabolic and molecular mechanisms. Trends Pharmacol Sci 31:89–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madrid LV, Wang CY, Guttridge DC, Schottelius AJG, Baldwin AS Jr, Mayo MW (2000) Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol Cell Biol 20:1626–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier B, Gluba W, Bernier B, Turner T, Mohammad K, Guise T, Sutherland A, Thorner M, Scrable H (2004) Modulation of mammalian life span by the short isoform of p53. Genes Dev 18:306–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majaw T, Sharma R (2015) Arginase I expression is upregulated by dietary restriction in the liver of mice as a function of age. Mol Cell Biochem 407:1–7

    Article  CAS  PubMed  Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin B, Mattsona MP, Maudsley S (2006) Caloric restriction and intermittent fasting: Two potential diets for successful brain aging. Ageing Res Rev 5:332–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masse I, Molin L, Billaud M, Solari F (2005) Lifespan and dauer regulation by tissue-specific activities of Caenorhabditis elegans DAF-18. Dev Biol 286:91–101

    Article  CAS  PubMed  Google Scholar 

  • Mitsiades CS, Mitsiades N, Poulaki V, Schlossman R, Akiyama M, Chauhan D, Hideshima T, Treon SP, Munshi NC, Richardson PG, Anderson KC (2002) Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene 21:5673–5683

    Article  CAS  PubMed  Google Scholar 

  • Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K (2013) Causes, consequences, and reversal of immune system aging. J Clin Invest 123:958–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musarò A, Dobrowolny G, Rosenthal N (2007) Theneuroprotective effects of a locally acting IGF-1 isoform. Exp Gerontol 42:76–80

    Article  PubMed  Google Scholar 

  • Nakagawa T, Guarente L (2011) Sirtuins at a glance. J Cell Sci 124:833–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemoto S, Fergusson MM, Finkel T (2004) Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306:2105–2108

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan D, Szestak T, Pell J (2002) Regulation of hepatic insulin-like growth factor I leader exon usage in lambs: effect of immunization against growth hormone-releasing factor and subsequent growth hormone treatment. J Anim Sci 80:1074–1082

    Article  PubMed  Google Scholar 

  • Oberbauer AM (2013) The regulation of IGF-1 gene transcription and splicing during development and aging. Front Endocrinol (Lausanne) 4:39

    Google Scholar 

  • Obsil T, Obsilova V (2008) Structure/function relationships underlying regulation of FOXO transcription factors. Oncogene 27:2263–2275

    Article  CAS  PubMed  Google Scholar 

  • Rincon M, Muzumdar R, Atzmon G, Barzilai N (2004) The paradox of the insulin/IGF-1 signaling pathway in longevity. Mech Ageing Dev 125:397–403

    Article  CAS  PubMed  Google Scholar 

  • Salminen A, Kaarniranta K (2010) Insulin/IGF-1 paradox of aging: regulation via AKT/IKK/NF-kappaBsignaling. Cell Signal 22:573–577

    Article  CAS  PubMed  Google Scholar 

  • Sansone L, Reali V, Pellegrini L, Villanova L, Aventaggiato M, Marfe G, Rosa R, Nebbioso M, Tafani M, Fini M, Russo MA, Pucci B (2013) SIRT1 silencing confers neuroprotection through IGF-1 pathway activation. J Cell Physiol 228:1754–1761

    Article  CAS  PubMed  Google Scholar 

  • Schug TT, Li X (2010) Surprising sirtuin crosstalk in the heart. Aging 2:129–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen R, Baltimore D (1986) Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46:705–716

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Dkhar P (2014) Biological basis of aging: theories and explanations. In: Sanchetee P (ed) Textbook of Geriatric Medicine. Indian Academy of Geriatrics (Paras Medical Publisher), Hyderabad, pp 24–31

    Google Scholar 

  • Sharma R, Dutta D (2006) Age-dependent decreases in renal glucocorticoid receptor function is reversed by dietary restriction in mice. Ann NY Acad Sci 1067:129–141

    Article  CAS  PubMed  Google Scholar 

  • Shavlakadze T, Winn N, Rosenthal N, Grounds MD (2005) Reconciling data from transgenic mice that overexpress IGF-I specifically in skeletal muscle. Growth Horm IGF Res 15:4–18

    Article  CAS  PubMed  Google Scholar 

  • Solon-Biet SM, Mitchell SJ, de Cabo R, Raubenheimer D, Le Couteur DG, Simpson SJ (2015) Macronutrients and caloric intake in health and longevity. J. Endocrinol. 226:R17–R28

    Google Scholar 

  • Sonntag WE, Steger RW, Forman LJ, Meites J (1980) Decreased pulsatile release of growth hormone in old male rats. Endocrinology 107:1875–1879

    Article  CAS  PubMed  Google Scholar 

  • Speakman JR, Mitchell SE (2011) Caloric restriction. Mol Aspects Med 32:159–221

    Article  CAS  PubMed  Google Scholar 

  • Suchiang K, Sharma R (2011) Dietary restriction regulates brain acetylcholinesterase in female mice as a function of age. Biogerontology 12:581–589

    Article  CAS  PubMed  Google Scholar 

  • Sussenbach J, Steenbergh P, Holthuizen P (1992) Structure and expression of the human insulin-like growth factor genes. Growth Regulat 2:1–9

    CAS  Google Scholar 

  • Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y (2007) Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem 282:6823–6832

    Article  CAS  PubMed  Google Scholar 

  • Tilstra JS, Clauson CL, Niedernhofer LJ, Robbins PD (2011) NF-kB in Aging and Disease. Aging Dis. 2:449–465

    PubMed  PubMed Central  Google Scholar 

  • Tran D, Bergholz J, Zhang H, He H, Wang Y, Zhang Y, Li Q, Kirkland JL, Xiao ZX (2014) Insulin-like growth factor-1 regulates the SIRT1-p53 pathway in cellular senescence. Aging Cell 13:669–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Der Heide LP, Hoekman MF, Smidt MP (2004) The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 380:297–309

    Article  Google Scholar 

  • Van Heemst D (2010) Insulin, IGF-1 and longevity. Aging Dis 1:147–157

    PubMed  PubMed Central  Google Scholar 

  • Vogt PK, Jiang H, Aoki M (2005) Triple layer control: phosphorylation, acetylation and ubiquitination of FOXO proteins. Cell Cycle 4:908–913

    Article  CAS  PubMed  Google Scholar 

  • Walford RL, Liu RK, Gerbased M, Mathies M, Smith GS (1973) Long term dietary restriction and immune function in mice—response to sheep red blood-cells and to mitogenic agents. Mech Ageing Dev 2:447–454

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Adamo ML, Koval AP, McGuinness MC, Ben-Hur H, Yang Y (1995) Alter- native leader sequences in insulin- like growth factor I mRNAs modulate translational efficiency and encode multiple signal peptides. Mol Endocrinol 9: 1380–1395

    Google Scholar 

  • Yang HW, Youm YH, Dixit VD (2009) Inhibition of thymic adipogenesis by caloric restriction is coupled with reduction in age-related thymic involution. J Immunol 183:3040–3052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW (2004) Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank UGC-DRS, DST-FIST, DBT infrastructure and Biochemistry Department of North-Eastern Hill University, Shillong for the research funds and facilities. IKH Hadem is thankful to CSIR (Council of Scientific and Industrial Research), New Delhi for providing financial assistant as junior/senior research fellowships (09/347(0189)/2010-EMR-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Hadem, I.K.H., Sharma, R. (2017). Insulin-like Growth Factor-1 and Its Related Signalling During Aging: Modulation by Dietary Restriction. In: Rath, P., Sharma, R., Prasad, S. (eds) Topics in Biomedical Gerontology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2155-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2155-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2154-1

  • Online ISBN: 978-981-10-2155-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics