Skip to main content

Titanium Alloys: Part 2—Alloy Development, Properties and Applications

  • Chapter
  • First Online:
Aerospace Materials and Material Technologies

Part of the book series: Indian Institute of Metals Series ((IIMS))

Abstract

Titanium alloys are the principal replacements, and in many cases also prime candidate materials to replace (i) aerospace special and advanced steels, owing to their significantly higher usable specific strength properties, (ii) aluminium alloys due to their better elevated temperature properties and (iii) nickel-base superalloys for much of the high pressure compressors (HPCs) of modern engines, owing to their superior medium temperature (up to 550 °C) creep strength and acceptable oxidation and corrosion resistances. This chapter summarizes the chemical compositions, properties and applications of commercially pure α-titanium, near-α, α + β and β titanium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lütjering G, Williams JC (2007) Titanium: engineering materials and processes, 2nd edn. Springer, Berlin, Germany

    Google Scholar 

  2. Boyer R, Welsch G, Collings EW (eds) (1994) Materials properties handbook: titanium alloys. ASM International, Materials Park, OH, USA

    Google Scholar 

  3. Zarkades A, Larson FR (1970) Elasticity of titanium sheet alloys. In: Jaffee RI, Promisel NE (eds) The science, technology and application of titanium. Pergamon Press, Oxford, UK, pp 933–941

    Chapter  Google Scholar 

  4. Conrad H, Doner M, de Meester B (1973) Deformation and fracture (controlling mechanisms for titanium plastic flow). In: Jaffee RI, Burte HM (eds) Titanium science and technology. Plenum Press, New York, USA, pp 969–1005

    Google Scholar 

  5. Partridge PG (1967) The crystallography and deformation modes of hexagonal close-packed metals. Metall Rev 12(1):169–194

    Article  Google Scholar 

  6. Paton NE, Williams JC, Rauscher GP (1973) The deformation of alpha-phase titanium. In: Jaffe RI, Burte HM (eds) Titanium science and technology, Plenum Press, New York, USA, pp 1049–1069

    Google Scholar 

  7. Paton NE, Williams JC (1970) Second international conference on the strength of metals and alloys. ASM, Metals Park, OH, USA, p 108

    Google Scholar 

  8. Rosenberg HW, Jaffee RI (1970) The science, technology and application of titanium. In: Jaffee RI, Promisel NE (eds) Proceedings of the 2nd international conference on titanium, Pergamon Press, New York, USA, pp 851–859

    Google Scholar 

  9. Baker H (ed) (1992) Alloy phase diagrams, ASM handbook, vol 3. ASM, Materials Park, OH, USA

    Google Scholar 

  10. Newkirk JB, Geisler AH (1953) Crystallographic aspects of the beta to alpha transformation in titanium. Acta Metall 1(35):370, 373–371, 374

    Google Scholar 

  11. Williams JC (1973) Kinetics and phase transformations (in Ti alloys). In: Titanium science and technology, pp 1433–1494

    Google Scholar 

  12. Collings EW (1994) Materials properties handbook: titanium alloys. ASM, Materials Park, OH, USA

    Google Scholar 

  13. Boyer RR (1993) Applications of beta titanium alloys in airframes. In: Eylon D, Boyer RR, Koss Donald A (eds) Beta Titanium Alloys in the 1990’s. The Minerals, Metal and Materials Society, Warrendale, PA, USA, pp 335–346

    Google Scholar 

  14. Buttrell WH, Shamblen CE (1999) Hearth melt plus vacuum arc remelt: production status. In: Titanium’95, science and technology, The Institute of Materials, London, UK, pp 1446–1453

    Google Scholar 

  15. Adams RT, Rosenberg HW (1982) Critical review a review of titanium ingot solidification. In: Williams JC, Belov AF Titanium and titanium alloys: scientific and technological aspects, 1st ed, Plenum Press, New York, USA, pp 127–135

    Google Scholar 

  16. Boyer R, Welsch G, Collings EW (eds) (1994) Materials properties handbook: titanium alloys, technical note 3: casting. ASM, Materials Park, OH, USA, pp 1079–1082

    Google Scholar 

  17. Eylon D, Froes FH, Gardiner RW (1983) Developments in titanium alloy casting technology. JOM 35(2):35–47

    Article  Google Scholar 

  18. Schutz Ronald W, Thomas David E (1987) Corrosion of titanium and titanium alloys. In: ASM Handbook Nineth Edition, Volume 13 Corrosion, ASM, Metals Park, Ohio, USA, pp 669–706

    Google Scholar 

  19. Myers JR, Bomberger HB, Froes FH (1984) Corrosion behavior and use of titanium and its alloys. JOM 36(10):50–60

    Article  Google Scholar 

  20. Schutz RW (1996) Development in Titanium alloy environmental behavior, titanium ‘95: science and technology. In: Proceedings of the eighth world conference on titanium. The Institute of Materials, London, UK, pp 1860–1870

    Google Scholar 

  21. Schutz RW (1994) Metallurgy and technology of practical titanium alloys. TMS, Warrendale, Pennsylvania, USA

    Google Scholar 

  22. Zwicker U (1974) Titan und Titanlegierungen. Springer-Verlag, Berlin, Germany, pp 102–107

    Google Scholar 

  23. Bania PJ, Parris WM (1990). Beta-21S: a high temperature metastable beta titanium alloy. In: Proceedings of the international conference on titanium products and applications, Titanium Development Association, vol 2, pp 784–793

    Google Scholar 

  24. Fleischer RL, Donald Peckner (1964) The strengthening of metals, vol 93. Reinhold, New York, USA

    Google Scholar 

  25. Okazaki K, Masuda I, Conrad H (1982) Mobile dislocation density during the plastic flow in Ti-interstitial alloys at low temperatures. In: Williams JC, Belov AF (eds) Titanium and titanium alloys: scientific and technological aspects, vol 1. Plenum Press, New York, USA, pp 497–505

    Google Scholar 

  26. Peters M, Lutjering G (1980) Control of microstructure and texture in Ti–6Al–4V. In: Jaffee RI, Kimura M, Izumi O (eds) Titanium ’80, science and technology. AIME, Warrendale, PA, USA, pp 925–936

    Google Scholar 

  27. Lütjering G, Albrecht J, Ivasishin OM (1995) Influence of cooling rate and beta grain size on the tensile properties of (alpha + beta) Ti-alloys. In: Blenkinsop PA, Evans WJ, Flower HM (eds) Titanium ’95: science and technology, vol 2. The Institute of Materials, London, UK, pp 1163–1170

    Google Scholar 

  28. Däubler MA, Helm D (1992) Surfaces and elevated temperature effects. In: Froes FH, Caplan IL (eds) Titanium ’92: science and technology, vol 1. TMS, Warrendale, Pennsylvania, USA, pp 41–50

    Google Scholar 

  29. Ankem S, Seagle SR (1984) The detrimental effects of iron on creep of Ti-6242 S alloys. Titanium Sci Technol 4:2411–2418

    Google Scholar 

  30. Sinha V, Mills MJ, Williams JC (2001) Dwell-fatigue behavior of Ti-6Al-2Sn-4Zr-2Mo-0.1Si alloy. In: Jata K, Lee EW, Frazier W, Kim NJ (eds) Lightweight alloys for aerospace application. TMS, Warrendale, Pennsylvania, USA, pp 193–208

    Google Scholar 

  31. Woodfield AP, Gorman MD, Corderman RR, Sutliff JA, Yamrom B (1996) “Effect of microstructure on dwell fatigue behavior of Ti6242”, titanium’95: science and technology. The Institute of Materials, Birmingham, UK, pp 1116–1123

    Google Scholar 

  32. Albrecht J, Lütjering G (2000) Microstructure and mechanical properties of titanium alloys. In: Gorynin IV, Ushkov SS (eds) Titanium ’99: science and technology, vol 1. Central Research Institute of Structural Materials, St. Petersburg, Russia, pp 363–374

    Google Scholar 

  33. Peters JO, Lütjering G, Koren M, Puschnik H, Boyer RR (1996) Processing, microstructure and properties of β-CEZ. In: Blenkinsop PA, Evans WJ, Flower HM (eds) Titanium’95: science and technology, vol 2. The Institute of Materials, London, UK, pp 1403–1410

    Google Scholar 

  34. Sauer C, Busongo F, Lütjering G (2002) Fatigue 2002. EMAS, Warley, UK, pp 2043–2050

    Google Scholar 

  35. Bania PJ (1994) Beta titanium alloys and their role in the titanium industry. In: Vassel A, Eylon D, Combres Y (eds) Beta titanium alloys (Société Française de Métallurgie et de Matériaux, Paris, France), pp 7–15

    Google Scholar 

  36. Boyer RR (1994) Beta titanium alloys. Société Française de Métallurgie et de Matériaux, Paris, pp 253–261

    Google Scholar 

  37. Peters M, Lütjering G, Ziegler G (1983) Control of microstructures of α + β titanium alloys. Zeitschrift für Metallkunde 74:274–282

    Google Scholar 

  38. Köppers M, Herzig C, Freisel M, Mishia Y (1997) Intrinsic self-diffusion and substitutional Al diffusion in α-Ti. Acta Met 45:4181–4191

    Article  Google Scholar 

  39. Helm D (1999) Application of titanium alloys as compressor discs and blades. In: Boyer RR, Eylon D, Lütjering G (eds) Fatigue behavior of titanium alloys. The Minerals, Metals and Materials Society, Warrendale, PA, USA, pp 291–298

    Google Scholar 

  40. Lütjering G, Helm D, Daubler M (1993)Influence of microstructure on fatigue properties of the new titanium alloy IMI 834. In: Bailon J-P, Dickson JI (eds) Fatigue 93 – Proceedings of the 5th international conference on fatigue and fatigue thresholds, vol 1. EMAS Publishing, Warrington, UK, pp 165–170

    Google Scholar 

  41. Thiehsen KE, Kassner ME, Pollard J, Hiatt DR, Bristow BM (1993) The effect of nickel, chromium and primary alpha phase on the creep behavior of Ti6242Si. Metall Trans 24A:1819–1826

    Article  Google Scholar 

  42. Russo PA, Wood JR, Brosius RN, Marcinko SW, Giangiordano SR (1995) Influence of Ni and Fe on the creep of beta annealed Ti6242S. In: Blenkinsop PA, Evans WJ, Flower HM (eds) Titanium’95: science and technology, vol 2. The Institute of Materials, London, UK, pp 1075–1082

    Google Scholar 

  43. Russo PA, Yu KO (1999) Effect of Ni, Fe and primary alpha on the creep of alpha-beta processed and annealed Ti–6Al–2Sn–4Zr–2Mo–0.9Si. In: Gorynin IV, Ushkov SS (eds) Titanium’99: science and technology, vol 1. Central Research Institute of Structural Materials, St. Petersburg, Russia, pp 596–603

    Google Scholar 

  44. Ankem S, Seagle SR (1984) Heat-treatment of metastable beta titanium alloys. In: Boyer RR, Rosenberg HW (eds) Beta titanium alloys in the 1980’s. TMS, Warrendale, Pennsylvania, USA, pp 107–126

    Google Scholar 

  45. Hayes RW, Viswanathan GB, Mills MJ (2002) Creep behavior of Ti–6Al–2Sn–4Zr–2Mo: I. The effect of nickel on creep deformation and microstructure Acta Mater, vol 50, pp 4953–4963

    Google Scholar 

  46. Viswanathan GB, Karthikeyan S, Hayes RW, Mills MJ (2002) Creep behaviour of Ti–6Al–2Sn–4Zr–2Mo: II. Mechanisms of deformation Acta Mater, vol 50, pp 4965–4980

    Google Scholar 

  47. Jeal RH (1982) Defects and their effect on the behaviour of gas turbine discs. In: ‘Maintenance in service of high temperature parts’, AGARD conference proceedings no. 317. Advisory Group for Aerospace Research and Development, Neuilly sur Seine, France, pp 6.1–6.15

    Google Scholar 

  48. Wagner L, Gregory JK (1993) Improvement of mechanical behavior in Ti–3Al–8V–6Cr-4Mo–4Zr by duplex aging. In: Eylon D, Boyer RR, Koss DA (eds) Beta titanium alloys in the 1990’s. TMS, Warrendale, Pennsylvania, USA, pp 199–209

    Google Scholar 

  49. Prandi B, Wadier J-F, Schwartz F, Mosser P-E, Vassel A (1990) Titanium 1990, products and applications. Titanium Development Association (TDA) Dayton, Ohio, USA, pp 150–159

    Google Scholar 

  50. Peters JO, Lütjering G, Koren M, Puschnik H, Boyer RR (1996) Processing, microstructure, and properties of β-CEZ. Mater Sci Eng A 213(1):71–80

    Article  Google Scholar 

  51. Combres Y, Champin B (1993) β-CEZ properties. In: Eylon D, Boyer RR, Koss Donald A (eds) Beta titanium alloys in the 1990’s. TMS, Warrendale, PA, USA, pp 477–484

    Google Scholar 

  52. Peters M, Lütjering G (1976) Influence of grain-size on tensile properties of a Ti–Mo alloy with precipitate-free zones. Zeitschrift für Metallkunde 67:811–814

    Google Scholar 

  53. Boyer RR (1996) An overview on the use of titanium in the aerospace industry. Mater Sci Eng A 213(1):103–114

    Article  Google Scholar 

Bibliography

  1. Leyens C, Peters M (eds) (2003) Titanium and titanium alloys: fundamentals and applications. WILEY VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

    Google Scholar 

Download references

Acknowledgments

The authors wish to place on record that Prof G. Lütjering would certainly have been included as an author but for his untimely demise. Nevertheless, the authors cannot thank him enough for the repository of knowledge that he has created in the second edition of the book on Titanium, published by Springer publications. The authors would like to thank Dr. A.K. Gogia, Dr. T.K. Nandy and Mr. Dipak K. Gupta of DMRL; Mr. Ramesh Babu, Mr. G.V.R. Murthy and Mr. U.V. Gururaja of Midhani; and, Mr. V.P. Deep Kumar of ADA for many inputs and technical data. They profoundly thank the editors, Dr. N. Eswara Prasad and Dr. R.J.H. Wanhill for their help in reviewing the contents of the book chapter and also for their constructive comments. The authors (AB and BS) are greatly indebted to Prof D. Banerjee, Dr. K. Tamilmani, Dr. Samir V. Kamat and Dr. Amol A. Gokhale for their kind support and encouragement. Funding from DRDO is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bhattacharjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Bhattacharjee, A., Saha, B., Williams, J.C. (2017). Titanium Alloys: Part 2—Alloy Development, Properties and Applications. In: Prasad, N., Wanhill, R. (eds) Aerospace Materials and Material Technologies . Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-2134-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2134-3_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2133-6

  • Online ISBN: 978-981-10-2134-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics