Skip to main content

Elastomers and Adhesives for Aerospace Applications

  • Chapter
  • First Online:
Book cover Aerospace Materials and Material Technologies

Part of the book series: Indian Institute of Metals Series ((IIMS))

Abstract

This chapter deals with the varieties and characteristics of elastomers and adhesives used in the aerospace industry. The key terms, various grades, structure and properties of each elastomer are discussed. An outline of rubber compounding and vulcanisation is presented. Significant elastomer properties for aerospace applications are highlighted. Further, an adhesives section includes the varieties of adhesives, mechanism of adhesive bonding, surface preparation, and joint designs for some loading conditions. Applications of elastomers and adhesives in the aerospace field are also surveyed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeGarmo EP, Black JT, Kosher RA (1988) Materials and processes in manufacturing. Macmillan Publishing Company, New York, USA

    Google Scholar 

  2. Lancho M, Fernandez A, Kiryenko S (2005) Shock attenuation system for spacecraft and adaptor. In: European conference on spacecraft structures, materials & mechanical testing. ESA Publications Division, ESTEC, Noordwijk, The Netherlands

    Google Scholar 

  3. Barlow FW (1993) Rubber compounding: principles: materials and techniques. Marcel Dekker Inc., New York, USA

    Google Scholar 

  4. Franta I (2012) Elastomers and rubber compounding materials. Elsevier Science Publishers Company, New York, USA

    Google Scholar 

  5. Groover MP (2010) Fundamentals of modern manufacturing materials processes and systems. John Wiley & Sons, Hoboken, New Jersey, USA

    Google Scholar 

  6. Griskey R (1995) Polymer process engineering. Chapman & Hall, New York, USA

    Book  Google Scholar 

  7. Parker Hannifin Corporation (2007) Parker O ring handbook ORD 5700. Parker Hannifin Corporation, Cleveland, Ohio, USA

    Google Scholar 

  8. White JR, De SK (eds) (2001) Raprarubber technology handbook. Rapra Technology, Billingham, UK

    Google Scholar 

  9. Morton M (ed) (1973) Rubber technology. Van Nostrand Reinhold Company, New York, USA

    Google Scholar 

  10. Nadgi K (1993) Rubber as an engineering material: guideline for users. Hanser Publishers, Munich, Germany

    Google Scholar 

  11. Ahmadi, HR, Muhr AH (1994) Damping of structural vibrations using rubbery materials. In: Third international congress on air- and structure-borne sound and vibration. June 13–15, 1994, Montreal, Canada, The International Institute of Acoustics and Vibration IIAV: www.iiav.org

  12. Roland CM (2004) Naval applications of elastomers. Rubber Chem Technol 77:544–551

    Google Scholar 

  13. Mark HF, Kroschwitz JI (1987) Encyclopedia of polymer science and engineering. John Wiley & Sons, Hoboken, New Jersey, USA

    Google Scholar 

  14. Hodges P (2004) Hydraulic fluids. Elsevier Ltd., Oxford, UK

    Google Scholar 

  15. Simpson RB (2002) Rubber basics. Smithers Rapra Ltd., Shawbury, UK

    Google Scholar 

  16. Agrawal JP (2010) High energy materials: propellants, explosives and pyrotechnics. Wiley VCH Verlag GmbH & Co., Weinheim, Germany

    Book  Google Scholar 

  17. Yang V, Brill TB, Ren W-Z (2000) Solid propellant chemistry, combustion and motor interior ballistics. In: Zarchan P (ed) Progress in astronautics and aeronautics, vol 185. American Institute of Aeronautics and Astronautics Inc., Reston, Virginia, USA

    Google Scholar 

  18. Bhuvaneswari CM, Kakade SD, Deuskar VD, Dange AB, Gupta M (2008) Filled ethylene-propylene diene terpolymer elastomer as thermal insulator for case-bonded solid rocket motors. Def Sci J 58(1):94–102

    Article  Google Scholar 

  19. Bhuvaneswari CM, Sureshkumar MS, Kakade SD, Gupta M (2006) Ethylene-propylene diene rubber as a futuristic elastomer for insulation of solid rocket motors. Def Sci J 56(3):309–320

    Article  Google Scholar 

  20. Wright WW (1990) Polymers in aerospace applications. Pergamon Press, Oxford, UK

    Google Scholar 

  21. Gent AN (2001) Engineering with rubber: how to design rubber components. Hanser Gardener Publications, Cleveland, Ohio, USA

    Google Scholar 

  22. Cheremisinoff NP (1997) Handbook of engineering polymeric materials. Marcel Dekker Inc., New York, USA

    Google Scholar 

  23. Sureshkumar MS, Bhuvaneswari CM, Kakade SD, Gupta M (2008) Studies on the properties of EPDM-CSE blend containing HTPB for case bonded solid rocket motor insulation. Polym Adv Technol 19:144–150

    Article  Google Scholar 

  24. Bielinski, DM, Pieczynska D, Jagielski J, Stomil (2007) Modification of elastomer friction by ion bombardment. In: High performance and speciality elastomers 2007: the fourth international conference, 5–6 December, 2007, Frankfurt, Germany, Rapra Technology Ltd., Shrewsbury, UK

    Google Scholar 

  25. Burkitt B, Burner S (2007) Incorporating functional fillers into silicone elastomer systems. In: Polymers in defence and aerospace applications, Smithers Rapra Technology Ltd., Shawbury, UK

    Google Scholar 

  26. Brydson JA (1999) Plastic materials. Butterworth-Heinemann, Oxford, UK

    Google Scholar 

  27. Franssen O, Bosshammer S (2008) Real fluorosilicones combined with LSR. Processing new product family FFSL. Smithers Rapra Technology Ltd., Shawbury, UK

    Google Scholar 

  28. Bhuvaneswari, CM, Shanmugavel R, Kale SS, Gouda G (2011), Study and evaluation of fluorosilicone—silicone elastomer blend as aeroengineseal. In: National conference on advanced polymers, fibres & fabrics, Kanpur, India

    Google Scholar 

  29. Drobny JG (2009) Technology of fluoropolymers. CRC Press, London, UK

    Google Scholar 

  30. Ebnesajjad S (2013) Introduction to fluoropolymers: materials, technology and applications. Elsevier Inc., Oxford, UK

    Google Scholar 

  31. Demerville T, Rubber materials and dynamic space applications. SMAC group, Mont Blanc Technologies, Toulon Cedex, France

    Google Scholar 

  32. Shanks RA, Kong I (2013) General purpose elastomers: structure, chemistry, physics and performance. In: Visakh PM, Thomas S, Chandra AK, Mathew AP (eds) Advances in elastomers: blends and interpenetrating networks. Springer-Verlag, Berlin, Germany

    Google Scholar 

  33. Ferrandez P (2008) Fluoroelastomers, FKM, FEPM. In: Klingender RC (ed) Handbook of speciality elastomers. CRC Press, London, UK

    Google Scholar 

  34. Cognard P (ed) (2005) Handbook of adhesives and sealants; basic concepts and high tech bonding. Elsevier Ltd., Oxford, UK

    Google Scholar 

  35. Madani K, Touzain S, Feaugas X, Benguediab M, Ratwani M (2009) Stress distribution in a 2024-T3 aluminum plate with a circular notch, repaired by a graphite epoxy composite patch. Int J Adhes Adhes 29:225–233

    Article  Google Scholar 

  36. Campbell FC (2001) Secondary adhesive bonding of polymer matrix composites. In: ASM handbook, vol. 21, Composites, ASM International, Materials Park, Ohio, USA

    Google Scholar 

  37. Barnes TA, Pashby IR (2000) Joining techniques for aluminium spaceframes used in automobiles part II—adhesive bonding and mechanical fasteners. J Mat Process Tech 99:72–79

    Article  Google Scholar 

  38. Dixon DG (2005) Aerospace applications of adhesives. In: Packham DE (ed) Handbook of adhesion. John Wiley & Sons Ltd., Chichester, UK

    Google Scholar 

  39. Crompton JS (1989) An examination of interfacial failure in adhesively bonded aluminum. J Adhes 28:135–143

    Article  Google Scholar 

  40. Minford JD (1993) Handbook of aluminum bonding technology and data. Marcel Dekker Inc., New York, USA

    Book  Google Scholar 

  41. Lee L-H (1991) Adhesive bonding. Plenum Press, New York, USA

    Book  Google Scholar 

  42. Wernick S, Sheasby PG, Pinner R (1987) Surface treatment and finishing of aluminium and its alloys. Finishing Publications Ltd, Stevenage, UK

    Google Scholar 

  43. Dahm RH (2005) Recently developed surface treatment methods. In: Packham DE (ed) Handbook of adhesion. John Wiley & Sons Ltd., Chichester, UK

    Google Scholar 

  44. Briggs D (2005) Plasma treatment. In: Packham DE (ed) Handbook of adhesion. John Wiley & Sons Ltd., Chichester, UK

    Google Scholar 

  45. Cope BC (2005) Fibre orientation, fibre–matrix interface; surface treatment. In: Packham DE (ed) Handbook of adhesion. John Wiley & Sons Ltd., Chichester, UK

    Google Scholar 

  46. Dixon DG, Cope BC (2005) Silane adhesion promotors. In: Packham DE (ed) Handbook of adhesion. John Wiley & Sons Ltd., Chichester, UK

    Google Scholar 

  47. Dillard DA (2010) Advances in structural adhesive bonding. Woodhead Publishing Ltd., Cambridge, UK

    Book  Google Scholar 

  48. Petrie EM (2000) Handbook of adhesives and sealants. McGraw-Hill, New York, USA

    Google Scholar 

  49. Corporation H (2007) Users guide to adhesives. Freeman Manufacturing and Supply & Co., Basel, Switzerland

    Google Scholar 

  50. Campbell FC (2006) Manufacturing technology for aerospace structural materials. Elsevier Ltd., Oxford, UK

    Google Scholar 

  51. Patrick RL (1976) Structural adhesives with emphasis on aerospace applications. Marcel Dekker Inc., New York, USA

    Google Scholar 

  52. Dunn DJ (2003) Adhesives and sealants: technology, applications and markets. Rapra Technology, Shawbury, UK

    Google Scholar 

  53. Zhang S, Zhao D (eds) (2012) Aerospace materials handbook. CRC Press, New York, USA

    Google Scholar 

  54. Da Silva LFM (2010) Technology of mixed adhesive joints. In: Advanced structural materials. Springer, Berlin, Germany

    Google Scholar 

Download references

Acknowledgments

The authors are most grateful to Dr. N Eswara Prasad and Dr RJH Wanhill for their detailed chapter review and guidance. They would also like to thank Shri Verrapa for graphical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. M. Bhuvaneswari or Shirish S. Kale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Bhuvaneswari, C.M., Kale, S.S., Gouda, G., Jayapal, P., Tamilmani, K. (2017). Elastomers and Adhesives for Aerospace Applications. In: Prasad, N., Wanhill, R. (eds) Aerospace Materials and Material Technologies . Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-2134-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2134-3_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2133-6

  • Online ISBN: 978-981-10-2134-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics