Skip to main content

Piezoceramic Materials and Devices for Aerospace Applications

  • Chapter
  • First Online:
Aerospace Materials and Material Technologies

Part of the book series: Indian Institute of Metals Series ((IIMS))

Abstract

Piezoelectric materials produce electric charges on application of mechanical stress, or change their dimensions when subjected to an electric field. Lead zirconate titanate (PZT) is a synthetic piezoceramic material with high piezoelectric properties. In aerospace PZT is used widely as sensors and actuators for vibration control of structures, health monitoring, development of smart aeroplane wings/morphing structures, energy harvesting and self-powering applications in micro aerial vehicles (MAVs), unmanned aerial vehicles (UAVs), as precision fuel injectors in propulsion systems, etc. This chapter reviews the preparation of piezoceramic materials, e.g. PZT, PZT–PMN and PMN–PT, and the fabrication and characterization of multilayer (ML) stacked devices and their applications in aerospace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uchino K (1995) Advances in ceramic actuator materials. Mater Lett 22:1–4

    Article  Google Scholar 

  2. Newnham RE, Ruschau GR (1991) Smart electroceramics. J Am Ceram Soc 74:463–480

    Article  Google Scholar 

  3. Cattafesta LN, Garg S, Shukla D (2001) Development of piezoelectric actuators for active flow control. AIAA J 39:1562–1568

    Article  Google Scholar 

  4. Giurgiutiu V, Zagrai A, Bao JJ (2002) Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring. Struct Health Monit 1:41–61

    Article  Google Scholar 

  5. Jaffe B, Jaffe H, Cook WR (1971) Piezoelectric ceramics. Academic Press, London, UK

    Google Scholar 

  6. Sahoo B, Panda PK (2013) Effect of lanthanum, neodymium on piezoelectric, dielectric and ferroelectric properties of PZT. J Adv Ceram 2:37–41

    Article  Google Scholar 

  7. Donnelly NJ, Shrout TR, Randall CA (2007) Addition of a Sr, K, Nb (SKN) combination to PZT(53/47) for high strain applications. J Am Ceram Soc 90:490–495

    Article  Google Scholar 

  8. Sahoo B, Panda PK (2007) Ferroelectric, dielectric and piezoelectric properties of Pb1–xCex(Zr0.60Ti0.40)O3, 0 ≤ x ≤ 0.08. J Mater Sci 42:9684–9688

    Article  Google Scholar 

  9. Linardos S, Zhang Q, Alcock JR (2007) An investigation of the parameters affecting the agglomerate size of a PZT ceramic powder prepared with a sol–gel technique. J Eur Ceram Soc 27:231–235

    Article  Google Scholar 

  10. Lee BW (2004) Synthesis and characterization of compositionally modified PZT by wet chemical preparation from aqueous solution. J Eur Ceram Soc 24:925–929

    Article  Google Scholar 

  11. Sahoo B, Jaleel VA, Panda PK (2006) Development of PZT powders by wet chemical method and fabrication of multilayered stacks/actuators. Mater Sci Eng, B 126:80–85

    Article  Google Scholar 

  12. Swartz SL, Shrout TR, Schulze WA, Cross LE (1984) Dielectric properties of lead magnesium niobate ceramics. J Am Ceram Soc 67:311–315

    Article  Google Scholar 

  13. Uchino K (1986) Electrostrictive actuators: materials and applications. Am Ceram Soc Bull 65:647–652

    Google Scholar 

  14. Narendar Y, Messing GL (1999) Seeding of perovskite lead magnesium niobate crystallization from Pb-Mg-Nb-EDTA gels. J Am Ceram Soc 82:1659–1664

    Article  Google Scholar 

  15. Carvalho JC, Santos COP, Zaghete MA, Oliveria CF, Varela JA (1996) Phase analysis of seeded and doped Pb (Mg1/3Nb2/3)O3 prepared by organic solution of citrates. J Mater Res 11:1795–1799

    Article  Google Scholar 

  16. Cavalheiro AA, Foschini CR, Zaghete MA, Santos COP, Cilense M, Varela JA, Longo E (2001) Seeding of PMN powders made by the pechini method. Ceram Int 27:509–515

    Article  Google Scholar 

  17. Camargo ER, Kakihana M, Longo E, Leite ER (2001) Pyrochlore free PMN prepared by a combination of partial oxalate methods. J Alloy Compd 314:140–146

    Article  Google Scholar 

  18. Panda PK, Sahoo B (2005) Preparation of pyrochlore free PMN powder by semi-wet chemical route. Mater Chem Phys 93:231–236

    Article  Google Scholar 

  19. Swartz SL, Shrout TR (1982) Fabrication of perovskite lead magnesium niobate. Mater Res Bull 17:1245–1250

    Article  Google Scholar 

  20. Sahoo B, Panda PK (2007) Dielectric, ferroelectric and piezoelectric properties of (1-x) [Pb0.91La0.09 (Zr0.60Ti0.40)O3]–x[Pb(Mg1/3Nb2/3)O3], 0 ≤ x ≤ 1. J Mater Sci 42:4270–4275

    Article  Google Scholar 

  21. Sahoo B, Panda PK (2007) Effect of CeO2 concentration on dielectric, ferroelectric and piezoelectric properties of PMN-PT (67/33) composition. J Mater Sci 42:4745–4752

    Article  Google Scholar 

  22. Panda PK, Sahoo B, Raja S, Vijaya Kumar MP, Shankar V (2012) Electromechanical and dynamic characterization of in-house-fabricated amplified piezo actuator. Smart Mater Res 2012:203625

    Google Scholar 

  23. Sahoo B, Panda PK (2012) Fabrication of simple and ring-type piezo actuators and their characterization. Smart Mater Res 2012:821847

    Google Scholar 

  24. Prasad SE, Waechter DF, Blacow RG, King HW, Yaman Y (2005) Application of piezoelectrics to smart structures. In: Proceedings of II conference on smart structures and materials, 18-21 July 2005, Portugal, Eccomas Thematic Conference, Eccomas, Barcelona, Spain, pp 1–16

    Google Scholar 

  25. Boller C (1999) Monitoring the integrity of aircraft structures—current procedures and smart sensing options. In: Proceedings of the international conference on smart materials, structures and systems, 7–10 July 1999, Bangalore, India, Mangalgiri PD, Upadhya AR, Selvarajan A (eds) Allied Publishers Limited, New Delhi, India, pp 31–43

    Google Scholar 

  26. Sodano HA, Inman DJ (2004) A Review of power harvesting from vibration using piezoelectric materials. Shock Vib Dig 36:197–205

    Article  Google Scholar 

  27. Starner T (1996) Human-Powered wearable computing. IBM Systems Journal 35:618

    Article  Google Scholar 

  28. Kymissis J, Kendall C, Paradiso J, Gershenfeld N (1998) Parasitic power harvesting in shoes. In: Proceedings of second IEEE international conference on wearable computing, pp 132–139

    Google Scholar 

  29. Priya S, Chen CT, Fye D, Zhand J (2005) Piezoelectric windmill—a novel solution to remote sensing. Jpn J Appl Phys 44:L104–L107

    Article  Google Scholar 

  30. Randall CA, Kelnberger A, Yang GY, Eitel RE, Shrout TR (2005) High strain piezoelectric multilayer actuators: a material science and engineering challenge. J Electroceram 14:177–191

    Article  Google Scholar 

  31. Boecking F, Sugg B (2006) Piezo actuators: a technology prevails with injection valves for combustion engines. In: Actuator 2006: 10th international conference on new actuators, 14–16 June 2006, Bremen, Germany, Borgmann H (ed), HVG Hanseatische Veranstaltungs-GmbH, Bremen, Germany, pp 171–176

    Google Scholar 

Download references

Acknowledgments

The author thanks Dr. B. Sahoo for the R&D support. The author also thanks the XRD and SEM groups of the Materials Science Division, TGA for CSMST Division, and Dr. S. Raja and Mr. V. Shankar of the STTD Division, for dynamic characterization of the amplified actuator. The author sincerely thanks NPSM, NPMASS, CSIR FYPs for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Panda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Panda, P.K. (2017). Piezoceramic Materials and Devices for Aerospace Applications. In: Prasad, N., Wanhill, R. (eds) Aerospace Materials and Material Technologies . Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-2134-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2134-3_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2133-6

  • Online ISBN: 978-981-10-2134-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics