Skip to main content

Niobium and Other High Temperature Refractory Metals for Aerospace Applications

  • Chapter
  • First Online:
Aerospace Materials and Material Technologies

Abstract

Refractory metal alloys based on Nb, Mo, Ta, W, and Re find applications in the aerospace industries because of their high melting points and high temperature strengths. They are generally produced by powder metallurgy technique due to their very high melting points. However, when refining is desired, melting under high vacuum becomes necessary, for which nuggets or powder based electrodes are employed. Niobium is the lightest refractory metal with density close to that of nickel, and exhibits good thermal conductivity. Niobium can be alloyed to improve high temperature strength and oxidation resistance. Applications in nuclear, aerospace, and defence sectors have been reported. The goal of current research in Nb alloys is to simultaneously achieve high strength and workability, and provide protection from oxidation for long-term operation. There is strong research interest in intermetallics also. This chapter will discuss the salient features of refractory metals and alloys in general, and Nb-based alloys in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephen JJ (1990) Recent advances in high-temperature niobium alloys. JOM 42(8):22–23

    Article  MathSciNet  Google Scholar 

  2. Wittenauer J (1990) Refractory metals 1990: old challenges, new opportunities. JOM 42(8):07–10

    Article  Google Scholar 

  3. Lambert JB (1990) Refractory metals and alloys. In: ASM handbook volume 2: properties and selection: nonferrous alloys and special-purpose materials. ASM International, Materials Park, OH, USA, pp 557–585

    Google Scholar 

  4. Frank RG (1968) Recent advances on columbium alloys. In: Machlin I, Begley RT, Weisert ED (eds) Refractory metal alloys metallurgy and technology. Plenum Press, New York, USA, pp 325–372

    Google Scholar 

  5. Cornie JA (1971) Development of precipitation strengthened columbium base alloys. AFML technical report AFML-TR-71-51, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Dayton, OH, USA

    Google Scholar 

  6. Roche TK, Graham DL (1970) Development of oxidation-resistant high strength columbium alloys. AFML technical report AFML-TR-69-344, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Dayton, OH, USA

    Google Scholar 

  7. Craigwojcik C (1991) High temperature niobium alloys. In: Stephens JJ, Ahmad I (eds) High temperature niobium alloys. The Minerals, Metals & Materials Society (TMS), Warrendale, PA, USA, pp 1–12

    Google Scholar 

  8. Sankar MV, Satya Prasad VV, Baligidad RG, Alam MdZ, Das DK, Gokhale AA (2015) Microstructure, oxidation resistance and tensile properties of silicide coated Nb-alloy C-103. Mater Sci Eng, A 645:339–346

    Article  Google Scholar 

  9. Eckert J (1997) Refractory metals. In: Habashi F (ed) Handbook of extractive metallurgy, vol III’. Wiley-VCH, Weinheim, Germany, pp 1403–1416

    Google Scholar 

  10. Wojcik CC (1998) High temperature niobium alloys. Adv Mater Processes 154(6):27–30

    MathSciNet  Google Scholar 

  11. Katsutoshi O, Kim YH (1992) Electron beam melting and refining of niobium. ISIJ Int 32(5):650–655

    Article  Google Scholar 

  12. Choudhary A, Hengsberger E (1992) Electron beam melting and refining of metals and alloys. ISIJ Int 32(5):673–681

    Article  Google Scholar 

  13. Loomis BA, Greber B (1970) The yield-stress of niobium and niobium-oxygen solid solutions. Scr Metall 4(11):921–924

    Article  Google Scholar 

  14. Sankar M, Baligidad RG, Gokhale AA (2013) Effect of oxygen on microstructure and mechanical properties of niobium. Mater Sci Eng, A 569:132–136

    Article  Google Scholar 

  15. Buckman RW (2000) New applications for tantalum and tantalum alloys. JOM 52(3):40–41

    Article  Google Scholar 

  16. Mendiratta MG, Lewandowski JJ, Dimiduk DM (1991) Strength and ductile-phase toughening in the two-phase Nb/Nb5Si3 alloys. Metall Trans A 22A:1573–1581

    Article  Google Scholar 

  17. Mendirattaa MG, Dimiduk DM (1993) Strength and toughness of a Nb/Nb5Si3 composite. Metall Trans A 24A(2):501–504

    Article  Google Scholar 

  18. Bewlay BP, Jackson MR, Lipsitt HA (1996) The balance of mechanical and environmental properties of a multielement niobium-niobium silicide-based in-situ composite. Metall Mater Trans A 27A(12):3801–3808

    Article  Google Scholar 

  19. Bewlay BP, Jackson MR, Subramanian PR (1999) Processing of high-temperature refractory metal silicide in-situ composites. JOM 51(4):32–36

    Article  Google Scholar 

  20. Kashyap C, Tiwary CS, Chattopadhyay K (2013) Microstructural and mechanical behaviour study of suction cast Nb-Si binary alloys. Mater Sci Eng, A 583:188–198

    Article  Google Scholar 

  21. Subramanian PR, Mendiratta MG, Dimiduk DM, Stucke MA (1997) Advanced intermetallic alloys—beyond gamma titanium aluminides. Mater Sci Eng, A 239–240:1–13

    Article  Google Scholar 

  22. Bewlay BP, Jackson MR, Gigliotti MFX (2002) Niobium silicide high temperature in situ composites, Chap 26. In: Westbrook JH, Fleischer RL (eds) Intermetallic compounds—principles and practice—Volume 3: progress, 3rd edn. Wiley, Hoboken, NJ, USA, pp 541–560

    Google Scholar 

  23. Shields JA (1992) Molybdenum and its alloys. Adv Mater Processes 142(3):28–36

    MathSciNet  Google Scholar 

  24. Wittenaurer JP, Nieh TG, Wadsworth J (1992) Tungsten and its alloys. Adv Mater Processes 142(3):28–37

    Google Scholar 

  25. Carlen JC, Bryskin BD (1994) Rhenium—a unique rare metal. Mater Manuf Processes 9(6):1087–1104

    Article  Google Scholar 

  26. Sherman AJ, Tuffias RH, Kaplan RB (1991) The properties and applications of rhenium produced by CVD. JOM 7(7):20–23

    Article  Google Scholar 

  27. Bryskin BD (1992) Rhenium and its alloys. Adv Mater Processes 142(3):22–27

    Google Scholar 

  28. Reed RC (2008) The superalloys: fundamentals and applications. Cambridge University Press, New York, NJ, USA, pp 170–187

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Satya Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Satya Prasad, V.V., Baligidad, R.G., Gokhale, A.A. (2017). Niobium and Other High Temperature Refractory Metals for Aerospace Applications. In: Prasad, N., Wanhill, R. (eds) Aerospace Materials and Material Technologies . Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-2134-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2134-3_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2133-6

  • Online ISBN: 978-981-10-2134-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics