Skip to main content

Structural Intermetallics

  • Chapter
  • First Online:
Aerospace Materials and Material Technologies

Part of the book series: Indian Institute of Metals Series ((IIMS))

Abstract

Development of materials for structural applications at elevated temperatures in aeroengines has encouraged research on intermetallic alloys. A select group of aluminides and silicides has shown significant promise for high temperature structural applications owing to their high melting temperatures, as well as their ability to retain strength and oxidation resistance at elevated temperatures. In recent years the focus is on multiphase multicomponent intermetallic alloys with significant volume fractions of ductile constituents to achieve an optimum combination of toughness and elevated temperature strength. The engineering properties and actual or potential aerospace applications of the currently most important structural intermetallics, the nickel, iron, and titanium aluminides, are concisely discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gottstein G (2004) Chapter 4, section 4.4. In: Physical foundations of materials science. Springer, Berlin, Germany

    Google Scholar 

  2. Westbrook JH, Fleischer RL (eds) (1994) Intermetallic compounds: principles and practice, vol 2. John Wiley & Sons Inc., Chichester, UK

    Google Scholar 

  3. Sauthoff G (1995) Intermetallics. VCH Verlagsgesellschaft, Weinheim, Germany

    Book  Google Scholar 

  4. Stoloff NS, Sikka VK (eds) (1996) Physical metallurgy and processing of intermetallic compounds. Springer, New York, NY 10036, USA

    Google Scholar 

  5. Mitra R (2015) Structural intermetallics and intermetallic matrix composites. IIT Kharagpur Research Monograph Series, CRC Press, Taylor & Francis Group, Boca Raton, FL 561, USA

    Google Scholar 

  6. Mitra R (2006) Mechanical behavior and oxidation resistance of structural silicides. Int Mater Rev 51(1):13–64

    Google Scholar 

  7. Davis JR (ed) (1997) ASM Specialty Handbook, Heat-resistant materials. ASM International, Materials Park, OH 44073-0002, USA, pp 389–414

    Google Scholar 

  8. Nash P, Singleton MF, Murray JL (1991) Al-Ni (aluminum-nickel). In: Nash P (ed) Phase Diagrams of Binary Nickel Alloys, ASM International, Materials Park, OH 44073-0002, pp 3–11

    Google Scholar 

  9. Lui SC, Davenport JW, Plummer EW, Zehner DM, Fernando GW (1990) Electronic-structure of NiAl. Phys Rev B, 42(3):1582–1597

    Google Scholar 

  10. Murray JL (1988) Calculation of the titanium–aluminum phase diagram. Metall Trans A 19A:243–247

    Article  Google Scholar 

  11. Banerjee D (1994) Ti3Al and its alloys. In: Westbrook JH, Fleischer RL (eds) Intermetallic compounds: principles and practice, vol 1. John Wiley & Sons Inc., Chichester, UK, pp 91–131

    Google Scholar 

  12. Vedula K, Stephens JR (1987) B2 aluminides for high temperature applications. In: Stoloff NS, Koch CC, Liu CT, Izumi O (eds) Proceedings of High Temperature Ordered Intermetallics II, Materials Research Society Symposium, vol 81. Materials Research Society, Warrendale, PA 15086, USA, pp 381–392

    Google Scholar 

  13. Gokhale AB, Abbaschian GJ (1991) The Mo–Si (molybdenum-silicon) system. J Phase Equilib 12(4):493–498

    Article  Google Scholar 

  14. Sakidja R, Perepezko JH, Kim S, Sekido H (2008) Phase stability and structural defects in high-temperature Mo–Si–B alloys. Acta Mater 56:5223–5244

    Article  Google Scholar 

  15. Schlesinger ME, Okamoto H, Gokhale AB, Abbaschian R (1993) The Nb–Si (niobium-silicon) system. J Phase Equilib 14(4):502–509

    Article  Google Scholar 

  16. Mao W, Guo X (2012) Effects of alloying and high-temperature heat treatment on the microstructure of Nb–Ti–Si based ultrahigh temperature alloys. Prog Nat Sci: Mater Int 22(2):139–145

    Article  Google Scholar 

  17. Schneibel JH, Liu CT, Heatherly L, Kramer MJ (1998) Assessment of processing routes and strength of a 3-phase molybdenum boron silicide (Mo5Si3–Mo5SiB2–Mo3Si). Scripta Mater 38:1169–1176

    Article  Google Scholar 

  18. Breig PG, Scott SW (1989) Induction skull melting of titanium aluminides. Mater Manuf Process 4:73–83

    Google Scholar 

  19. Bewlay BP, Jackson MR, Lipsitt HA (1996) The balance of mechanical and environmental properties of a multielement niobium-niobium silicide-based in situ composite. Metall Mater Trans A 27A:3801–3808

    Article  Google Scholar 

  20. Bewlay BP, Jackson MR, Subramanian PR (1999) Processing high-temperature refractory-metal silicide in-situ composites. J Metals 51(4):32–36

    Google Scholar 

  21. Aguilar J, Schievenbusch A, Kättlitz O (2011) Investment casting technology for production of TiAl low pressure turbine blades—process engineering and parameter analysis. Intermetallics 19(6):757–761

    Article  Google Scholar 

  22. Aikin RM Jr (1997) The mechanical properties of in-situ composites. J Met 49(8):35–59

    Google Scholar 

  23. Morsi K (2001) Review: reaction synthesis processing of Ni–Al intermetallic materials. Mater Sci Eng, A 299:1–15

    Article  Google Scholar 

  24. Sandvik Osprey Ltd, Neath, West Glamorgan, UK

    Google Scholar 

  25. Sikka VK, Wilkening D, Liebetrau J, Mackey B (1998) Melting and casting of FeAl-based cast alloy. Mater Sci Eng A 258:229–235

    Article  Google Scholar 

  26. Aoki K, Izumi O (1979) Improvement in room temperature ductility of the intermetallic compound Ni3Al by ternary element addition. J Jpn Inst Met 43:358–359

    Google Scholar 

  27. Jozwik P, Polkowski W, Bojar Z (2015) Applications of Ni3Al based intermetallic alloys−current stage and potential perceptivities. Materials 8(5):2537–2568. doi:10.3390/ma8052537

    Article  Google Scholar 

  28. Vedula K (1994) FeAl and Fe3Al. In: Westbrook JH, Fleischer RL (eds) Intermetallic compounds: principles and practice, vol 2. John Wiley & Sons Inc., Chichester, UK, pp 199–209

    Google Scholar 

  29. Tortorelli PF, DeVan JH (1992) Behavior of iron aluminides in oxidizing and oxidizing/sulfidizing environments. Mat Sci Eng A, 153:573–577

    Google Scholar 

  30. Kim BG, Kim GM, Kim CJ (1995) Oxidation behavior of TiAl-X (X = Cr, V, Si, Mo or Nb) intermetallics at elevated temperature. Scr Metall Mater 33(7):1117–1125

    Article  Google Scholar 

  31. Norris G (2006) Power house. Flightglobal.com, 13 June 2006

  32. Darolia R, Walston WS, Nathal MV (1996) NiAl alloys for turbine airfoils. In: Kissinger RD, Deye DJ, Anton DL, Cetel AD, Nathal MV, Pollock TM, Woodford DA (eds) Superalloys 1996, The Minerals, Metals & Materials Society, Warrendale, PA 15095, USA, pp 561–570

    Google Scholar 

  33. Nathal M, Veris SJ (2008) Glenn takes a bow for impact on GEnx engine, http://www.nasa.gov/centers/glenn/news/AF/2008/July08_GEnx.html

  34. Bartolotta PA, Krause DL (1999) Titanium aluminide applications in the high speed civil transport. National Aeronautics and Space Administration Technical Memorandum NASA/TM−1999-209071, Glenn Research Center at Lewis Field, Cleveland, OH 44135-3191: available from the NASA Center for Aerospace Information, Hanover, MD 21076-1320, USA

    Google Scholar 

  35. Banerjee D (2003) Titanium, its alloys and intermetallics. In: Chidambaram R, Banerjee S (eds) Materials research: current scenario and future projections. Allied Publishers Pvt. Limited, New Delhi, India, pp 215–237

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mitra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Mitra, R., Wanhill, R.J.H. (2017). Structural Intermetallics. In: Prasad, N., Wanhill, R. (eds) Aerospace Materials and Material Technologies . Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-2134-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2134-3_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2133-6

  • Online ISBN: 978-981-10-2134-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics